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Abstract

Theoretical models often neglect the importance of ex-post feedback for equilib-
rium behavior in games. We test for this importance in a set of new experiments of
the centipede game with feedback about aggregate behavior in each round. To make
formal predictions, we develop a simple model that applies the framework of Dekel, Fu-
denberg, and Levine (2004). Unlike many popular models, our model, which combines
self-confirming equilibrium with non-selfish payoffs, predicts that aggregate feedback
has equilibrium effects. Our subjects exhibit Nash behavior more often than subjects
in previous experiments, and aggregate feedback causes even stronger convergence to
Nash equilibrium. However, after slightly changing the payoff structure of the experi-
mental game, the treatment effects of aggregate information often shift in the opposite
direction. From the policy point of view, the experimental results show that whether
aggregate information generates more trust and higher social payoffs depends on the
details of the game.

Keywords: Centipede Game, Bayesian Games, Self-Confirming Equilibrium, Social
Trust

JEL Classification Codes: C71, C73, C91
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1 Introduction

Does aggregate feedback1 affect long-run behavior in a dynamic game with large populations?
The literature has shown that aggregate feedback may affect equilibrium play in “recurring
games” with social learning (Jackson and Kalai, 1997) and also in games with psychological
preferences (Battigalli and Dufwenberg, 2009) or preferences with conformity or reciprocity
(Cialdini and Goldstein, 2004, Levine, 1998).2 In this paper we wish to show, theoretically
and experimentally, that aggregate feedback matters, even without social learning about
the payoff function, and without conditional social preferences. We start from the observa-
tion that the heterogeneous self-confirming equilibrium beliefs introduced in Fudenberg and
Levine (1993) have the property that they are not robust to aggregate information release.
The reason is that some individuals may maintain wrong beliefs, which may be falsified
when true aggregate behavior is revealed. Fudenberg and Levine (1997) argue that these
heterogeneous beliefs might play an important role in subjects’ behavior in experiments of
extensive-form games. In this paper we formalize and experimentally test their informal
prediction that aggregate information release will have strong effects on players’ equilibrium
behavior, focusing on the centipede game.

There are two reasons for the choice of the centipede game. First, the results from
previous centipede game experiments have been among the most famous examples of failure
of game-theoretic predictions. A series of experimental and theoretical papers has been
inspired by the classical experimental study of McKelvey and Palfrey (1992) (henceforth
referred to as MP). It is of interest to examine whether aggregate information brings subjects’

1We will use the terms “aggregate feedback” and “aggregate information” interchangeably, to denote
information about behavior in a large number of different matches, with different individual players in each
match.

2Conformity, reciprocity and psychological preferences are called “conditional social preferences”. They
make aggregate feedback relevant for equilibrium play, because they imply that individuals’ behavior depends
on their beliefs about the behavior of peers, or about other individuals’ beliefs. In dynamic games with
random matching, each individual repeatedly plays a fixed stage game against individuals that belong to the
other population-roles. In the absence of aggregate information, long-run beliefs, regarding the behavior of
peers or regarding others’ beliefs, need not be correct. This is because there is no repeated interaction with
peers (only with opponents) and no feedback about others’ beliefs, so agents need not learn the relevant
information, even in the long run. Aggregate feedback implicitly provides information about others’ beliefs,
and explicitly reveals peers’ behavior. Thus, it can change individuals’ equilibrium beliefs and their behavior.
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behavior closer to Nash equilibrium with selfish payoffs, or not. Second, the centipede game
that we use is a two-stage trust game, and it is worthwhile examining whether aggregate
information can induce more trust and increase social payoffs in the long run, or not.3 Since
aggregate information is often in the hands of policy-makers, there are important lessons that
might be learned for economic policy from this exercise. Previous experiments of the trust
game and related games indicate that it is possible that aggregate information encourages
trusting behavior and improves social payoffs.4

In the first part of the paper, we propose a model based on the framework of Dekel,
Fudenberg, and Levine (2004) (henceforth referred to as DFL), introducing a small fraction
of non-selfish individuals in the population of player 2’s of the centipede game. The presence
of non-selfish individuals, who pass in every opportunity, is necessary, since heterogeneous
beliefs alone cannot explain why an individual would pass in the last decision node of the
centipede game, “giving away money” to others.5 The model has similarities with the model
developed by MP to explain their data, but the solution concepts are motivated by learning
theory, and differ from standard concepts for Bayesian games. Unlike sequential equilibrium,
the concept of type-heterogeneous self-confirming equilibrium (THSCE) does not assume
correct beliefs about opponents’ play.

In the second part of the paper, we present several experiments of two-player, four-move
centipede games, which are designed to test the effects of aggregate information release. In
our experimental sessions, each subject is randomly assigned to one of two fixed groups,
and interacts with each member of the other group exactly once. There are three forms of
information feedback. The control treatments, where no aggregate feedback is provided, are
called “no information” treatments. In the “full information” treatments, subjects can see
the aggregate proportions of Pass and Take, in each of the four decision nodes of the game,
in the immediately previous round. In the “partial information” treatments, each subject
observes these proportions only for the decision nodes that belong to the other group.6

Two payoff structures are used. In the “initial-payoff” treatments, we use the same payoff
structure as in MP (Figure 1). In the “modified-payoff” treatments, we introduce a small
but salient change in the payoff structure, such that the cost, for player 2, of choosing Pass in
the last node is lower (Figure 2). The experimental and theoretical results and contributions
are summarized as follows:

1. In the initial-payoff treatment with no aggregate feedback, subjects reach the Nash
equilibrium outcome (of the game where all individuals are assumed to have selfish

3The importance of social capital in modern societies has been greatly underscored by sociologists and
political scientists (Fukuyama, 2001; 2002).

4These experiments typically find positive effects of aggregate information on social payoffs. Berg, Dick-
haut, and McCabe (1995) used an one-round trust game, and found that aggregate information about the
past behavior of another group of subjects increased social payoffs. Ortmann, Fitzgerald, and Boeing (2000)
showed that this result is robust to the way information is presented and to prompts for strategic reason-
ing. In the field experiment of Frey and Meier (2004), revealing information about the fraction of the total
population that performed a certain charitable action tended to increase the frequency of this action.

5A non-trivial fraction of subjects in previous experiments, as well as in our experiment, exhibit this
behavior.

6Each group corresponds to a player-role in the game. Each of the four decision nodes belongs to one of
the two groups. This means that, with partial information, subjects in the role of player 2 observe aggregate
information only in the nodes that belong to subjects in the role player 1, and vice versa.
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payoffs) more often in our experiments than in MP. This might be due to the fact that
our UCLA subjects, who are part of a relatively large subject pool, are less likely to
behave cooperatively than MP’s Caltech subjects, who belong to a small subject pool.
These results show that there are limits to the robustness of the strong results of MP.

2. In the initial-payoff treatments with aggregate information, strong convergence to the
Nash equilibrium outcome takes place, both under full and under partial informa-
tion release. Aggregate information has a negative effect on trust and social payoffs.
Moreover, subjects’ behavior does not seem to depend much on whether own-group
information is revealed or not, which is consistent with our model. These results indi-
cate that frequent Nash play can be observed in centipede experiments, even without
changing the structure of MP’s game.7

3. The small alteration in payoffs causes a remarkably large change in the effects of
aggregate information. In the modified-payoff treatments, convergence goes in the
opposite direction (that of increasing payoffs), in two of the three experimental sessions
with aggregate information. Thus, aggregate information seems to increase average
payoffs in this case. Hence, the results show that the relationship between aggregate
information and social payoffs is not fixed, even for similar games. The policy message
is that policy-makers should reveal only “optimistic” information. Moreover, the results
show that there does not seem to exist a stable relationship between aggregate feedback
and the performance of Nash equilibrium and its refinements.8

4. The behavioral change, caused by the payoff modification, is partly due to the fact that
aggregate information, after each round, introduces strong path dependence, which
tends to magnify initial trends in behavior. Simple regression analysis shows that
aggregate play depends much more on play in the previous period, when aggregate
information is publicly revealed, than when it is not. In addition, repeated-game
effects9 may have also played a role in the behavioral change.

5. Unlike several standard models, our simple deterministic model has relatively good
performance. In the environment with no aggregate feedback, there are multiple equi-
libria. The model specifies conditions that have to hold in any equilibrium distribution
of moves in the four decision nodes, and these agree with the data. In the environment
with aggregate feedback, the model has only two equilibrium outcomes. We propose

7As we shall see in the next section, several experiments of the centipede game found stronger support in
favor of the Nash prediction than MP. However, they changed the basic structure of MP’s extensive form,
often confounding more than one such modification.

8Our paper thus contributes to the literature on the effects of aggregate information on the performance
of theoretical predictions. Harrison and McCabe (1996), after observing convergence to the subgame-perfect
equilibrium in their ultimatum game experiments, claimed that aggregate information serves as a surrogate
to common belief in rationality. This general assertion does not find support in the rest of the literature.
Dufwenberg and Gneezy (2002) examined experimental auctions, where information about the entire vector
of bids led average bids away from Nash equilibrium. Furthermore, as we have already seen, in trust and
public goods games, aggregate information tends to reduce the performance of equilibrium predictions (it
increases cooperation).

9These effects occur when subjects realize that by passing now they might affect the future behavior of
opponents, and thus they might not choose a myopic best response.

4



an equilibrium selection device, and experimental results are generally consistent with
the predicted equilibrium outcome.

6. The predictive accuracy of our model is reasonable, given that it is a deterministic
model of experimental subjects’ behavior, and the fact that multiplicity of equilibria
is a common feature of self-confirming equilibrium models. Our application is one of
the first that combine self-confirming equilibrium with non-selfish preferences. It also
examines the intuitively natural, but rarely studied observation environment, where
actions, but not types, are observed in each round of play.

Section 2 introduces the centipede game, and explains how our paper relates to the rele-
vant theoretical and experimental literature. In section 3, we present the general framework
of our model, and we apply it to the centipede game, deriving exact predictions. Section
4 introduces our experiments. Section 5 presents the results of our five experimental treat-
ments. Section 6 considers the performance of our model and alternative theories. Section
7 discusses the dynamics of play, and the possibility of repeated-game effects. In section 8
we conclude, and point out possible directions for future research.

2 The centipede game and related literature

The behavior of experimental subjects in the centipede game has been one of the most
intriguing results of the experimental economics literature. In the two-player centipede game
(see Figure 1 for an example), two players share a monetary amount split into a large and a
small pile, in a predetermined way for each terminal node. In each decision node, the player
who moves can either “take” the large pile of money and the game ends, or “pass” and let the
total amount multiply in size. A player should choose Take now, if he expects that the other
player will choose Take in the subsequent move, but the player is better off choosing Pass
now, if he expects that the other player will also choose Pass in the subsequent move. In its
finite version, the centipede game has an obvious candidate for a prediction of how it will
be played: the unique Nash equilibrium outcome (and of course the unique subgame-perfect
equilibrium outcome), has player 1 choose Take, in the first move, with probability one.10

Early experimental studies found little support in favor of the Nash prediction. We shall
call “equilibrium percentage” the percentage of experimental matches, in late rounds of play,
which finish in the first terminal node (which corresponds to the Nash outcome). In MP,
subjects’ equilibrium percentage was no more than 8%. Nagel and Tang (1998), using the
normal form of a 12-move centipede game, found an equilibrium percentage not exceeding
0.5%. Fey, McKelvey, and Palfrey (1996) used a game with constant social payoffs,11 and the
equilibrium percentage in their experiments was between 20% and 70%. In Rapoport et al.

10Any strategy where player 1 passes in his fist decision node with positive probability can be part of an
equilibrium only if player 2 also passes in his first decision node with positive probability. But for this to
be optimal, player 1 should pass with positive probability in his second decision node, and so on. Finally,
player 2 should pass with positive probability in his last decision node, which is clearly not optimal given
that this node is reached with positive probability.

11In this game, the predictions of Nash, fairness and focal point theories agree in the same predicted
outcome (the first terminal node with probability one).
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Figure 1: A Two–Player, Four-Move Centipede Game with Geometrically Increasing Payoffs

(2003), the equilibrium percentage was between 30% and 40%, in an experiment where each
“inning” of choices involved three players, rather than two.12 Murphy, Rapoport, and Parco
(2006) used a continuous-time, symmetric version of the centipede game, and observed high
equilibrium rates, especially for large groups of subjects. Finally, in Palacios-Huerta and
Volij (2009), subjects included sophisticated chess players, who tended to play according to
the Nash equilibrium prediction with higher frequency.13

Many different theoretical explanations have been offered for these results. MP intro-
duced an incomplete information game with a small fraction of altruists, who pass in every
node. McKelvey and Palfrey (1998) later developed the concept of Agent Quantal Response
Equilibrium (AQRE), which captures subjects’ behavior in their original centipede experi-
ment, as well as results from other games. This concept assumes that agents have correct
beliefs about others’ play, but imperfectly best-respond to these beliefs. Zauner (1999) used
a similar idea, but he employed a different structure of the noise, and also interpreted the
noise differently. We have already seen that Fudenberg and Levine (1997) explained subjects’
behavior as best-responding to beliefs, which need not be correct, but only consistent with
the evidence. We enrich Fudenberg and Levine’s explanation by adding some individuals
with non-standard preferences, which is necessary in order to fully explain the results.14

3 Our model

We shall first motivate and introduce the general framework, which we will use for modeling
the long-run behavior of our subjects. Subsequently, we shall apply this framework to the
particular extensive forms that we use in the experiments, and we will get exact predictions.

As we shall explain in section 6, models that use standard solution concepts, such as
Nash equilibrium, AQRE, and sequential equilibrium, are not appropriate for capturing the

12In addition to this modification, stakes were much higher, the number of rounds was 60, rather than 10,
and the last terminal node gave zero payoffs to all players.

13For comparison, in our control treatment, which was essentially a replication of MP, the equilibrium
percentage was about 30%. In our “full information” treatment with the initial payoffs, with no changes in
the basic game structure of MP, the equilibrium percentage was 50%.

14The level-k analysis of Kawagoe and Takizawa (2008) also explains the results of experiments of the
centipede game using the possibility of wrong beliefs. However, they focus on initial rounds only, whereas
we are interested in equilibrium play.
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Figure 2: Our Two–Player Centipede Game with Modified Payoffs

equilibrium effects of aggregate information. The reason is that they tend to ignore factors
such as the ex-post feedback from play (Armantier, 2004, p. 238). In our experiments we
are interested in the long-run behavior of subjects, in a setting of repeated interactions with
anonymous matching. The appropriate steady-state concepts for capturing this behavior
are developed in learning-motivated equilibrium models.15 A well-known result from these
models is that the steady state of a belief-based learning process is a “conjectural” or “self-
confirming” equilibrium (Battigalli, 1987, Fudenberg and Levine, 1993, Kalai and Lehrer,
1993). In such an equilibrium, each individual best-responds to beliefs (about opponents’
strategies) that need not be correct, but only consistent with the feedback that the agent
receives, given her steady-state behavior.

In the self-confirming equilibrium (SCE) tradition, the information feedback, which play-
ers receive each time the game is played, is important for determining long-run behavior.
Any information about opponents’ play, that an agent eventually learns from personal ex-
perience, is contained in the aggregate feedback. But the converse is not true. Therefore,
aggregate information about play has a natural effect on equilibrium beliefs and behavior.
Each individual’s beliefs should respect this information, so the set of possible beliefs in a
self-confirming equilibrium is typically smaller when aggregate information is revealed.

The general framework that we shall use in our model follows DFL, who consider the im-
plications of learning theory for Bayesian games.16 We shall model the interaction between
subjects as a Bayesian game (Figure 3), because we introduce a non-selfish type. We chose
this modeling approach, because we believe that the introduction of non-selfish individu-
als, whose behavior is very basic, generates the simplest self-confirming equilibrium model,
capable of fully capturing the data of MP. In addition, using the DFL framework, we can

15We should note here that an important underlying assumption in the “learning in games” literature
is that individuals’ beliefs are formed purely by experience. No prior knowledge of opponents’ payoffs is
assumed, and, in general, agents do not deduct behavior from prior information about the parameters of the
game.

16Our experimental interactions can only be imperfectly captured by the environment of Fudenberg and
Levine (1993), where individuals interact anonymously in an extensive-form game. We adhere to some of the
assumptions of this model: each individual knows the extensive form of the game and her payoffs for each
terminal node, but not the payoffs of other individuals. However, we need to depart from the assumption
that individuals observe the realized terminal node of their game after each match. The reason is that we
believe that it does not correspond with the experimental environment. In the experiments, subjects only
observe the moves of opponents on the path of play, but not their types.
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Figure 3: The Incomplete Information Centipede Game

model aggregate information release as a change in the “signal function”, which determines
the feedback, which each individual receives in each period.

We will also make the assumption that an individual always has the same type (rather
than the type being drawn independently in each period).17 This is in accordance with the
observation made in MP, that in their data, there is a nontrivial fraction of subjects, who
always choose Pass. Therefore, the framework that we shall now consider corresponds to
“fixed types for each agent, but diversity across agents in the same role” (DFL, p. 298).

3.1 The formal framework

The framework considers static, simultaneous-move games with I player-roles. All of the
parameters of the game are assumed to be finite. The characteristics of the static stage
game are as follows. Player i’s type is denoted θi ∈ Θi. Players simultaneously choose
actions, which we denote ai ∈ Ai, for each player i. A strategy for player i, σi, is a function
from own types to probability distributions over actions, so that σi(θi) ∈ ∆(Ai).

18 The set

17Although an agent will have a single type in all periods, because of random matching, her opponents in
each match shall not know the agent’s type.

18We need to emphasize our specific interpretation of σi. We assume that each individual in population
i has a fixed type, and chooses a pure action in Ai. However, the population as a whole randomizes across
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of all such strategies for player i is denoted Σi, and σi(ai|θi) denotes the probability that
σi(θi) assigns to action ai. Action, type and strategy profiles are denoted a ∈ A, θ ∈ Θ, and
σ ∈ Σ, respectively. Player i’s payoffs ui(a, θ) depend on the profile of actions played and
the profile of types. If the game has private values, each player’s utility depends only on the
profile of actions, and her own type: ui(a, θ) = ui(a, θi).

DFL’s solution concept is motivated by the idea that the above stage game is played
repeatedly, but anonymously, by individuals that belong to large populations. Individuals’
types are drawn, before the first interaction, according to a probability distribution p. After
the type of each individual is drawn, individuals are randomly matched in each period to
play the fixed stage game, with a matching process independent of the players’ types. The
matching process ensures that the types of individuals in a given match are independent.
Individuals do not know opponents’ strategies and the actual distribution of types, by player

i has “conjectures” σ̂−i ∈
∏
j 6=i

Σj about opponents’ strategies, and “interim beliefs” µ̃θi ∈

∆(Θ−i) about opponents’ types. Players update their beliefs and conjectures, after getting
feedback on opponents’ moves and types, each time they play the game. The feedback
received after each interaction is described by the private deterministic signal function (also
called “observation function”) yi(a, θ).

19

DFL’s focus is on the possible steady states of the dynamic process that may arise,
starting from any priors about opponents’ types and strategies. The following solution
concept captures the fact that different individuals, in a given population, may have different
personal experience stemming from equilibrium behavior, if their types or their equilibrium
actions differ. Accordingly, their beliefs and conjectures, which must be consistent with this
personal experience, may differ in equilibrium. Equilibrium actions are only required to be
optimal given beliefs and conjectures.

Definition 1 (DFL p. 298). A strategy profile σ is a type-heterogeneous self-confirming
equilibrium if, for each player i, and for each âi and θi such that p(θi)σi(âi|θi) > 0, there are
conjectures σ̂−i and interim beliefs µ̃θi (both of which can depend on âi and θi), such that:

1. âi ∈ argmaxai
∑

a−i,θ−i

ui(ai, a−i, θi, θ−i)µ̃
θi(θ−i)σ̂−i(a−i|θ−i)

2. For all ỹi in the range of yi, the following holds:∑
{a−i,θ−i:yi(âi,a−i,θi,θ−i)=ỹi}

µ̃θi(θ−i)σ̂−i(a−i|θ−i) =
∑

{a−i,θ−i:yi(âi,a−i,θi,θ−i)=ỹi}

p(θ−i)σ−i(a−i|θ−i)

Condition 2 simply says that the probability distribution of signals, induced by player
i’s beliefs and conjectures, coincides with the distribution of signals induced by the actual
distribution of types and the actual strategies of opponents.

types and actions. Each population i is partitioned into subpopulations, corresponding to different types. A
strategy σi, as defined above, further partitions each such subpopulation into sets of individuals that choose
the same action.

19Note that this function is the same for all individuals in a given population, but the actual feedback that
each individual receives depends on her action and type. Therefore, the feedback from equilibrium behavior
that individuals receive can differ.
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Distributions of actions of each population

As we shall see, since our game has private values, players simply best-respond to their
beliefs about the distribution of actions of other populations. It will therefore be convenient
to introduce some new notation, in order to describe these distributions.

Let the marginal of p on i’s types be denoted pi ∈ ∆(Θi). Population i’s distribution
of types pi and its strategy σi determine the distribution of actions of this population as
follows. Consider a specific action ai. The fraction of population i that chooses ai is simply
given by the sum (over types θi) of the probabilities assigned to action ai by σi(θi), each
probability weighted by pi(θi), the fraction of population i that has type θi. To formalize
this, we define, for each i, the function si : Σi×∆(Θi)→ ∆(Ai) as follows. For each ai ∈ Ai,
si(ai|σi, pi) ≡

∑
θi∈Θi

pi(θi)σi(ai|θi), where si(ai|σi, pi) denotes the probability that si(σi, pi)
assigns to action ai. So, si(σi, pi) is simply the distribution of actions of population i induced
by σi and pi.

Let an individual player in population j have interim beliefs µ̃θj and conjectures σ̂−j =

(σ̂1, σ̂2, . . . , σ̂j−1, σ̂j+1, . . . , σ̂I). Denote the marginal of the beliefs µ̃θj on i’s types by µ̃
θj
i .

Then, the distribution si(σ̂i, µ̃
θj
i ) can be interpreted as the distribution of actions of popu-

lation i, which this individual player j expects, given her interim beliefs µ̃θj and her con-
jectures σ̂−j. We can thus define the profile of expected distributions of actions for players
other than j, induced by j’s beliefs µ̃θj and conjectures σ̂−j, as follows: s−j(σ̂−j, µ̃

θj) =

[s1(σ̂1, µ̃
θj
1 ), . . . , sj−1(σ̂j−1, µ̃

θj
j−1), sj+1(σ̂j+1, µ̃

θj
j+1), . . . , sI(σ̂I , µ̃

θj
I )].

Aggregate information about distributions of actions

The private signal functions of DFL correspond to the feedback that individuals receive
by personal experience alone. So, they are not appropriate for describing aggregate informa-
tion revelation. It is important to emphasize that when aggregate information is released,
the signal that an individual player i observes depends on the strategy profile σ and the
distribution of types p. That is, the signal depends on the aggregate behavior and the ag-
gregate distribution of types, rather than the actions and types of players in individual i’s
own matches. Hence, to capture aggregate information release, we need a signal function Yi
that has as its arguments σ and p. With such a signal function, two different individuals
who belong to population i receive exactly the same signal each period, regardless of their
own behavior, and the behavior of the individuals with whom they are matched.

In our experiments, individuals receive aggregate feedback about the distributions of
actions of opponent populations (not about opponents’ strategies or types). In particular,
subjects from population i are informed that the profile of distributions of actions, of other

populations, lies in a certain subset of the set
∏
j 6=i

∆(Aj), the set of possible distribution

profiles. So, the observation function of population i maps the profile of strategies and the
joint distribution of types into a set of profiles of opponents’ action distributions. Hence,

Yi : Σ × ∆(Θ) → P(
∏
j 6=i

∆(Aj)), where the notation P(X) denotes the power set of X. In

other words, Yi(σ, p) is the set that contains all the profiles of distributions of actions for
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players other than i, consistent with the aggregate feedback that player i receives when
the profile of strategies is σ and the probability distribution of types is p. Notice that the
exact form of Yi depends on the structure of the game, and we shall soon see this form for
our centipede game. The equilibrium notion needs to be slightly modified, when aggregate
information about the distributions of actions is provided.

Definition 2. A strategy profile σ is a type-heterogeneous self-confirming equilib-
rium with aggregate information if, for each player i, and for each âi and θi such that
p(θi)σi(âi|θi) > 0, there are conjectures σ̂−i and interim beliefs µ̃θi(both of which can depend
on âi and θi), such that:

1. âi ∈ argmaxai
∑

a−i,θ−i

ui(ai, a−i, θi, θ−i)µ̃
θi(θ−i)σ̂−i(a−i|θ−i)

2. s−i(σ̂−i, µ̃
θi) ∈ Yi(σ, p)

Condition 2 says that the expected profile of distributions of actions of opponents, induced
by conjectures and interim beliefs, must be consistent with the aggregate feedback induced
by the true strategies and distribution of types.

3.2 The centipede game in the DFL framework

Consider the one-sided incomplete information model of the centipede game of Figure 3.
Following MP, we assume that there is a small fraction of individuals with non-selfish pref-
erences. However, unlike MP, non-selfish agents exist only in population 2. Non-selfish (we
shall also call them “altruistic”) individuals get payoffs commensurate to the total monetary
payoffs of a terminal node (q > 0). The fraction of individuals in population 2, who have
altruistic preferences, is given by the parameter ξ, where we assume that 1/30 < ξ < 1/10.
We shall analyze the steady states of a system with large populations, who repeatedly play
this game, with random matching. Before the first interaction, individuals in population 2
learn their type.

As we shall now show, the DFL framework can easily accommodate this extensive-form
game by defining the appropriate action sets and signal functions. With respect to the
action sets, first consider the reduced normal form of the complete-information centipede
game of Figure 1. Each action in the model of DFL will correspond to a pure reduced
normal form strategy. Accordingly, the set of players is I = {1, 2} and the action sets for
players 1 and 2 are A1 = {T1, P1T3, P1P3} and A2 = {T2, P2T4, P2P4}. For example, the
action P1T3 for player 1 corresponds to the reduced normal form strategy “choose Pass in
decision node 1 and choose Take in decision node 3” (the second decision node of player 1).
Player 1 has one possible type, and player 2 has two possible types, so we set Θ1 = {θ1} and
Θ2 = {θ1

2, θ
2
2}, where θ1

2 is the selfish type. Since there is only one possible type for player 1,
the interim beliefs of player 2 play no role, and they will be omitted in the following analysis.
Moreover, the interim beliefs of the unique type of player 1 will be denoted µ̃1 for notational
simplicity. The probability distribution over types, p, simply assigns probability ξ to {θ1, θ

2
2}

and probability (1− ξ) to {θ1, θ
1
2}. Clearly, the game has private values.

A strategy for player 1 is a distribution over actions, so σ1 ∈ ∆(A1). For player 2,
a strategy is a function from {θ1

2, θ
2
2} to the set ∆(A2). The functions s1 : Σ1 → ∆(A1)
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and s2 : Σ2 × ∆(Θ2) → ∆(A2) describe population distributions of actions induced by
strategies and distributions of types, as explained in section 3.1. For example, s2(T2|σ2, p) =
(1 − ξ) · σ2(T2|θ1

2) + ξ · σ2(T2|θ2
2) is the fraction of population 2 that chooses action T2, if

the strategy of this population is σ2 and the distribution of types is given by p. Notice that
s1(σ1) = σ1 for all σ1 ∈ Σ1.

The most important part in analyzing the incomplete information centipede game within
the DFL framework is defining the appropriate signal functions. These functions will be
constructed based on the implications of the extensive form of Figure 3, for the feedback
that individuals will receive each time they play the game. Importantly, the signal functions
capture all the relevant aspects of the extensive form for our purposes.

Notice that the signal functions will depend on whether or not aggregate feedback is
provided. Accordingly, we shall first define them for the setting with no aggregate feedback,
and we will also state some conditions that need to hold in a THSCE without aggregate
information. Subsequently, we shall specify the appropriate signal functions in the presence
of aggregate feedback about the distributions of actions of others.

3.2.1 The signal functions in the setting without aggregate information

First consider the setting without aggregate information. As we have noted, each time the
centipede game is played, subjects observe opponents’ moves along the path of play, but
not opponents’ types. Hence, the most natural assumption is that players do not observe
the terminal node of the “grand” incomplete information game. A useful way to think
about what they actually observe is to consider any subgame starting from any initial move
by Nature. A player observes which terminal node of this subgame occurs, without being
able to distinguish between subgames. In Figure 3, we label the terminal nodes of each
such subgame, using the letters {α, β, γ, δ, ε}. The observation function y (same for the two
players) can be defined as follows:

1. y(T1, T2, θ
1
2) = y(T1, T2, θ

2
2) = y(T1, P2T4, θ

1
2) = y(T1, P2T4, θ

2
2) = y(T1, P2P4, θ

1
2) =

y(T1, P2P4, θ
2
2) = α

2. y(P1T3, T2, θ
1
2) = y(P1T3, T2, θ

2
2) = y(P1P3, T2, θ

1
2) = y(P1P3, T2, θ

2
2) = β

3. y(P1T3, P2P4, θ
1
2) = y(P1T3, P2P4, θ

2
2) = y(P1T3, P2T4, θ

1
2) = y(P1T3, P2T4, θ

2
2) = γ

4. y(P1P3, P2T4, θ
1
2) = y(P1P3, P2T4, θ

2
2) = δ

5. y(P1P3, P2P4, θ
1
2) = y(P1P3, P2P4, θ

2
2) = ε

The information (regarding opponent’s chosen action) that an agent can infer from an
interaction, depends on both her behavior and her opponent’s behavior. For example, if, in
a given interaction, player 1 chooses T1, then she observes nothing about player 2’s action.
Hence, all actions of player 2 should be viewed as possible. The first condition in the
signal function says exactly this: when action T1 is played, the observation function does
not distinguish between 2’s actions. On the other hand, when player 1 chooses P1P3, all
information sets of player 2 can be reached, and a different signal is observed for each action
of player 2 (see conditions 2, 4 and 5). Hence, player 1 can fully distinguish between the
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actions of player 2. Finally, when player 1 chooses P1T3, she can tell whether player 2 has
chosen T2, but she cannot distinguish between P2T4 and P2P4, as indicated in condition 3.

From the perspective of player 2, when she chooses action T2 she may only observe the
behavior of player 1 in the latter’s first information set. Accordingly, player 2 may distin-
guish T1 from the other two actions of player 1, since when she observes “α” she infers T1.
However, she cannot distinguish between P1T3 and P1P3, since when she observes “β” she
does not know which of the two actions player 1 has chosen. When player 2 chooses any of
the other two actions, P2T4 or P2P4, she can distinguish between any of player 1’s actions.
This is because a unique action of player 1 is compatible with each signal, given player 2’s
own action. Note that neither player 1 nor player 2 can distinguish between the opponent’s
types, for any profile of actions and types.

Type-heterogeneous self-confirming equilibrium with no aggregate information

We shall use a simple lemma to illustrate some conditions that need to hold in a THSCE
of our incomplete information four-move centipede game. To make the conditions easier
to follow, we shall use two general payoff functions u1(a1, a2), u2(a2, a1, θ

1
2) (that satisfy the

condition of private values), and we shall also use the general distribution of types p. Private
values simplify the THSCE conditions significantly, since each player’s strategy is a best re-
sponse to her expected distribution of opponent’s actions. In particular, the expected utility
of an action, given the strategy and the distribution of types of the other population, can be
written in the following simplified way, for player 1 and selfish player 2:

Eu1(a1, σ2, p) = u1(a1, T2) · s2(T2|σ2, p) + u1(a1, P2T4) · s2(P2T4|σ2, p)+
u1(a1, P2P4) · s2(P2P4|σ2, p)

Eu2(a2, σ1) = u2(a2, T1, θ
1
2) · s1(T1|σ1) + u2(a2, P1T3, θ

1
2) · s1(P1T3|σ1)+

u2(a2, P1P3, θ
1
2) · s1(P1P3|σ1)

Lemma 1: The definition of type-heterogeneous self-confirming equilibrium implies the
following conditions for our game:

1. If σ is a THSCE such that σ1(T1) > 0, there are conjectures and beliefs σ̂2, µ̃1 such
that T1 maximizes Eu1(a1, σ̂2, µ̃1) with respect to a1.20

2. If σ is a THSCE such that σ1(P1T3) > 0, there are conjectures and beliefs σ̂2, µ̃1 such
that P1T3 maximizes Eu1(a1, σ̂2, µ̃1) with respect to a1, and also such that s2(T2|σ̂2, µ̃1) =
s2(T2|σ2, p).

3. If σ is a THSCE such that σ1(P1P3) > 0, there are conjectures and beliefs σ̂2, µ̃1

such that P1P3 maximizes Eu1(a1, σ̂2, µ̃1) with respect to a1, and also such that
s2(T2|σ̂2, µ̃1) = s2(T2|σ2, p), s2(P2T4|σ̂2, µ̃1) = s2(P2T4|σ2, p) and s2(P2P4|σ̂2, µ̃1) =
s2(P2P4|σ2, p).

20Notice that condition (2) in Definition 1 has no bite in this case, so there are no restrictions on possible
beliefs and conjectures.
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4. If σ is a THSCE such that σ2(T2|θ1
2) > 0, there are conjectures σ̂1 such that T2 maxi-

mizes Eu2(a2, σ̂1) with respect to a2, and also such that s1(T1|σ̂1) = s1(T1|σ1).

5. If σ is a THSCE such that σ2(P2T4|θ1
2) > 0, there are conjectures σ̂1 such that P2T4

maximizes Eu2(a2, σ̂1) with respect to a2, and also such that s1(T1|σ̂1) = s1(T1|σ1),
s1(P1T3|σ̂1) = s1(P1T3|σ1) and s1(P1P3|σ̂1) = s1(P1P3|σ1).

6. If σ is a THSCE such that σ2(P2P4|θ1
2) > 0, there are conjectures σ̂1 such that P2P4

maximizes Eu2(a2, σ̂1) with respect to a2, and also such that s1(T1|σ̂1) = s1(T1|σ1),
s1(P1T3|σ̂1) = s1(P1T3|σ1) and s1(P1P3|σ̂1) = s1(P1P3|σ1).

The proof simply applies the definition of THSCE, and uses the compact notation for
the distributions of actions in order to simplify the expressions. Notice that the outcome
where σ1(T1) = 1 is clearly the outcome of a THSCE, since action T1 can be rationalized
by unconstrained beliefs (condition 1). This is true both in the presence and the absence of
aggregate information. The consistency conditions on beliefs can be easily understood if one
considers the fact that each individual uses a pure action in equilibrium. If the action that
the individual chooses is sufficiently informative, the distribution of opponents’ actions that
she expects equals the true distribution. The informativeness of an action depends on the
information sets of opponents (in the original extensive form of the game) that it reaches
with positive probability.

3.2.2 The signal functions in the setting with aggregate information

Recall that with aggregate information, all individuals in one population-role observe a set
of possible distributions of actions for the other population-role. This is the aggregate signal.
We need to emphasize the importance of the fact that the centipede game is an extensive-
form game. Because of this fact, the aggregate signal may not be fully informative (meaning
that it may not be a point in the space of the distributions of actions of the other player).
The aggregate signal received by population i depends on which information sets of the other
population (again, in the original extensive form of the game) are reachable21 given σi and
pi.

Remember that a subject, in our experiments with aggregate feedback, observes the
aggregate proportions of Pass and Take in each of the two decision nodes of the opponent,
but only if such a proportion is available. Whether this proportion is available or not,
depends on the behavior of the subject’s own population. Assume that the behavior of
population 1 is such that action P1P3 is never played, but P1T3 is played with positive
probability. Then, the first information set of player 2 is reachable (and is actually reached
with positive probability), but the second information set of player 2 is not reachable.22

Thus, the information that individuals in population 1 receive, by observing the aggregate
signal, is the fraction of individual 2’s that play T2 (remember that this fraction is determined

21An information set is reachable, given population i’s behavior and distribution of types, if it can be
reached with positive probability for some strategy profile of i’s opponents. Whether this set is actually
reached with positive probability, or not, also depends on the behavior of i’s opponents.

22In other words, the proportions of Pass and Take, in the second decision node of population 2, are not
available for subjects to see.
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by 2’s strategy σ2 and the distribution of types p). On the other hand, if population 1’s
strategy is such that P1P3 is played with positive probability, both information sets of player
2 are reachable. Hence, the aggregate signal will be a point in the space of distributions of
player 2’s actions.23 Finally, if all individual 1’s play T1, then no information set of player
2 is reachable, and the aggregate signal provides no information (it is the whole space).
Accordingly, the observation function for population 1 is:

• Y1(σ1, σ2, p) = ∆(A2), if s1(T1|σ1) = 1

• Y1(σ1, σ2, p) = {f ∈ ∆(A2) : f(T2) = s2(T2|σ2, p)}, if s1(T1|σ1) 6= 1, s1(P1P3|σ1) = 0

• Y1(σ1, σ2, p) = {f ∈ ∆(A2) : f(T2) = s2(T2|σ2, p), f(P2T4) = s2(P2T4|σ2, p), f(P2P4) =
s2(P2P4|σ2, p)}, if s1(P1P3|σ1) 6= 0

With respect to the aggregate signal function of population 2, notice that the first in-
formation set of player 1 is always reached, regardless of 2’s actions. If the behavior of
population 2 is such that all individuals choose action T2, then the aggregate signal reveals
only the fraction of population 1 that chooses T1. If there exists a positive fraction of pop-
ulation 2 that plays P2T4 or P2P4, then both information sets of player 1 are reachable.
Then, the aggregate signal reveals the fraction of population 1 that plays each of the three
actions.24 So, for population 2, the observation function is the following:

• Y2(σ1, σ2, p) = {g ∈ ∆(A1) : g(T1) = s1(T1|σ1)}, if s2(T2|σ2, p) = 1

• Y2(σ1, σ2, p) = {g ∈ ∆(A1) : g(T1) = s1(T1|σ1), g(P1T3) = s1(P1T3|σ1), g(P1P3) =
s1(P1P3|σ1)}, if s2(T2|σ2, p) 6= 1

Consider equilibria with aggregate information, as specified in Definition 2. Condition
2 of the definition implies that each individual’s beliefs and conjectures, in population i, is
such that the distribution of opponents’ actions, induced by these beliefs and conjectures,
lies in Yi(σi, σj, p). This captures the fact that each individual’s beliefs about the opponents’
distribution of actions respects aggregate information.

3.3 Characterizing possible equilibrium outcomes

We are interested in making predictions about subjects’ behavior in experiments, and in
comparing the predictive performance of our model with the performance of other models.

23The second information set of player 2 will not be reached if T2 is chosen by all individual 2’s. However,
in this case, the information from the behavior in the first information set of player 2 is enough to pinpoint
a unique distribution of actions for population 2.

24It is important to underline a significant assumption that we will be using in the analysis. Because of the
fact that there are two large populations of individual players, we consider a small fraction of one population
as representative of the population. For example, even if only 2% of player 1’s choose Pass in information
set 1, we consider the behavior of the individual 2’s, with whom they are matched, as representative of
population 2. Since the interaction is assumed to be completely anonymous, these individual 2’s have been
randomly chosen from a very large population. Hence, these individuals are a large enough random sample,
such that their behavior mirrors the strategy of the whole population 2.
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In the experiments we do not observe subjects’ reduced normal form strategies (actions),
but only their choices on the path of play. Moreover, the predictions of the AQRE model
are presented as distributions of moves in each decision node of the complete-information
extensive form of the game. For these two reasons, the most convenient way of organizing
the experimental data is as empirical aggregate distributions of moves (Pass, Take), in each
of the four decision nodes of the complete-information centipede game.

The use of reduced normal form strategies was fruitful for employing the framework of
DFL and for defining the appropriate solution concepts. Now we need to examine what
THSCE predicts about aggregate distributions of moves. The idea is the following: imagine
that there are large populations of individuals, who are randomly matched, and play the
centipede game as predicted by the THSCE. We randomly take the results from a large
number of matches, and compile aggregate distributions of moves in each decision node.
Assume further that we are unable to distinguish between different types, so we pull the
data from different types together. Then, what kinds of distributions of moves could we
observe?

We shall restrict attention to a specific set of strategy profiles: Σ∗ = {σ ∈ Σ1 × Σ2 :
s1(P1P3|σ1) 6= 0, s2(T2|σ2, p) 6= 1}. This set contains the strategy profiles such that all
decision nodes of the centipede game are reached with positive probability. We define the
functions πi : Σ∗ → ∆({Pi, Ti}) for i = 1, 2, 3, 4, as follows:

1. π1(P1|σ) = 1− σ1(T1)

2. π2(P2|σ) = 1− ξ · σ2(T2|θ2
2)− (1− ξ) · σ2(T2|θ1

2)

3. π3(P3|σ) = σ1(P1P3)/[1− σ1(T1)]

4. π4(P4|σ) = [ξ ·σ2(P2P4|θ2
2) + (1− ξ) ·σ2(P2P4|θ1

2)]/[1− ξ ·σ2(T2|θ2
2)− (1− ξ) ·σ2(T2|θ1

2)]

Again, the notation πi(Pi|σ) represents the probability that πi(σ) assigns to Pi. These
functions have the following interpretation. Let the strategy profile σ be played in a given
period. The number πi(Pi|σ) is the fraction of the population (to whom information set i
belongs) that chooses the move Pi, conditional on reaching information set i, in this period.25

In particular, the conditional fraction of Pass in the first information set of the game
is simply equal to the fraction of population 1 that chooses P1T3 or P1P3. This fraction is
equal to 1 − σ1(T1). Similarly, in the second information set of the game, the conditional
fraction of Pass is equal to the fraction of population 2 that does not choose T2. In the third
information set things complicate a bit. The conditional fraction of Pass is not the fraction
of population 1 that chooses action P1P3. The reason is that the individual 1’s who have
reached the third information set do not constitute a representative sample of population 1.
For, only individuals who do not choose action T1 may have reached that node. Accordingly,
the appropriate fraction is given by the proportion of individual 1’s who choose action P1P3,
among all individual 1’s who choose either action P1P3 or action P1T3.26 This is given by

25We shall call πi(Ti|σ) the theoretical “Conditional Take Fraction” in node i. This prediction will be
compared with the empirical “Conditional Take Fraction” from our data.

26To put it differently, the individual 1’s who reach node 3 are a representative sample of the subpopulation
of individual 1’s who choose either action P1P3 or action P1T3. Therefore, the conditional fraction of move
P3 must be equal to the proportion of this subpopulation that chooses action P1P3.

16



σ1(P1P3)/[1−σ1(T1)]. The same logic holds for the conditional fraction of Pass in the fourth
information set. The denominator in the right-hand side of the fourth equation is the fraction
of population 2 that does not choose T2. The numerator is the fraction of population 2 that
chooses P2P4.

Using several propositions, we shall get restrictions on the conditional fractions of Pass
and Take that can be observed in a THSCE. After introducing the experimental data, we
shall then check if these restrictions hold for the empirical distributions of moves. The propo-
sitions refer both to the initial-payoff game of Figure 1, and to the modified-payoff game of
Figure 2, and they consider both “information feedback” environments. Propositions 1− 3
are proven in the appendix.

The game with the initial payoffs

It will be understood that the following three propositions concern our incomplete infor-
mation centipede game with the initial payoffs. Propositions 1 and 2 consider the environ-
ment without aggregate information, and Proposition 3 pertains to the environment with
full or partial aggregate information.

Proposition 1: Let σ be a strategy profile such that σ1(T1) 6= 1. Then, σ is a type-
heterogeneous SCE only if σ ∈ Σ∗, πi(Ti|σ) 6= 1 for i = 1, 2, 3, 4, and π2(P2|σ) ·π4(P4|σ) = ξ.

Proposition 2: Let σ be a strategy profile such that 0 < πi(Ti|σ) < 1 for i = 1, 2, 3, 4.
Then, σ is a type-heterogeneous SCE only if 1/7 ≤ π4(P4|σ) ≤ 7ξ, π3(P3|σ) ≥ 1/7, and
1/7 ≤ π2(P2|σ) ≤ 7ξ.

Proposition 3: Let σ be a strategy profile such that σ1(T1) 6= 1. Then, σ is a type-
heterogeneous SCE with aggregate information only if π1(T1|σ) = 0, π2(P2|σ) = 7ξ, π3(P3|σ) =
1/7 and π4(P4|σ) = 1/7.

Notice that, in Proposition 1, we have added the redundant condition that σ belongs to
Σ∗, in order to emphasize the fact that the functions πi, i = 1, 2, 3, 4 are defined for all the
THSCE profiles described in the propositions. This indicates that restricting attention to
Σ∗ does not rule out any THSCE, except the trivial one where σ1(T1) = 1.

The game with the modified payoffs

It will be understood that the following three propositions concern the four-move cen-
tipede game with the modified payoffs. This game is similar to the game of Figure 3, except
in the last terminal node of the subgame where player 2 is selfish, where payoffs are (9, 3),
instead of (9.6, 2.4). The modification is slight, so the conditions in Propositions 1−3 change
only partially. In particular, Proposition 1 holds as it is. We also have the following new
propositions that apply to the modified-payoff game:

Proposition 2*: Let σ be a strategy profile such that 0 < πi(Ti|σ) < 1, for i = 1, 2, 3, 4.
Then, σ is a type-heterogeneous SCE only if 0.157 ≤ π4(T4|σ) ≤ 7ξ, π3(P3|σ) ≥ 1/7, and
1/7 ≤ π2(P2|σ) ≤ ξ/0.157.

Proposition 3*: Let σ be a strategy profile such that σ1(T1) 6= 1. Then, σ is a type-
heterogeneous SCE with aggregate information only if π1(T1|σ) = 0, π2(P2|σ) = ξ/0.157,
π3(P3|σ) = 1/7 and π4(P4|σ) = 0.157.
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The proofs are similar to the ones of the game with the initial payoffs, and are omitted.
Evidently, in the presence of aggregate information, the set of THSCE outcomes is smaller.
Notice that the model does not predict different behavior when partial, rather than full infor-
mation is revealed. Equilibrium only requires correct beliefs about opponents’ distribution
of moves. In section 6, we shall use an estimate of the parameter ξ and a sensible refinement,
and show that the conditions of the propositions describe the data relatively accurately.

4 The experiments

Twelve experimental sessions were conducted at the California Social Science Experimental
Laboratory (CASSEL) at UCLA, between March and October of 2007. All subjects were
UCLA students and the vast majority was undergraduate students. There were nine sessions
with n = 30 (n is the number of participants), two sessions with n = 28, and one session
with n = 26. Each subject played n

2
rounds of the four-move centipede game, plus three

practice rounds. A rotating matching scheme was used, as in MP, and the subject pool
was divided into two groups of n

2
, the composition of which was fixed throughout each

session.27 Each participant was matched with each member of the other group exactly once.
All the information about the structure of the game and the matching details was made
public knowledge to subjects, since the instructions were read in public. Subjects were
paid the amount that they accumulated in all real rounds, plus a $5 participation fee, and
each experimental currency unit corresponded to one US dollar. Participants did not have
particular difficulties understanding the game, and also had many opportunities for learning,
during the practice rounds and the (usually 15) real rounds of the game. Average payoffs
were equal to $18.73 and each session lasted for about 50 minutes.

Table 1 shows the basic features of all 12 sessions. The game played in the first seven
sessions (the initial-payoff sessions), was exactly the one described in Figure 1 (the amounts
refer to US dollars).28 In sessions NIR1 and NIR2 the treatment was called “No Information
Revelation” (NIR). This treatment was essentially a replication of the four-move sessions
of MP. In sessions FIR1 and FIR2 the treatment was called “Full Information Revelation”
(FIR). Subjects received information about how both groups played in the previous round.
In particular, during each round, all subjects saw the proportions of Pass and Take, in each
of the four decision nodes of the game, in the previous round. For example, during round 10,
in the first decision node, all subjects saw the fraction of the members of the GREEN group
that chose Pass or Take, in this particular node, during the ninth round. In the second
decision node, all subjects saw the fractions of the members of the YELLOW group that
chose Pass or Take, in this node, in the ninth round. Similar information was shown in all

27The two groups were labeled the “GREEN” group and the “YELLOW” group. The members of the
GREEN group always had the role of player 1 in the centipede game, and the members of the YELLOW
group always had the role of player 2. Hence, each subject played the role of only one player (1 or 2)
throughout all rounds.

28These sessions, therefore, had the same payoff structure as in MP, but dollar payoffs were 50% higher in
each terminal node, in order to account for the difference in purchasing power, due to the temporal distance
between the experiments.
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Table 1: Characteristics of Each Experimental Session

Session # of Subjects Aggregate Info # of Matches Payoffs

NIR1 30 NO 225 Similar with MP
NIR2 28 NO 196 Similar with MP
FIR1 30 FULL 225 Similar with MP
FIR2 30 FULL 225 Similar with MP
PIR1 30 PARTIAL 225 Similar with MP
PIR2 28 PARTIAL 196 Similar with MP
PIR3 30 PARTIAL 225 Similar with MP

NIR1-M 30 NO 225 Modified
NIR2-M 26 NO 169 Modified
FIR1-M 30 FULL 225 Modified
FIR2-M 30 FULL 225 Modified
FIR3-M 30 FULL 225 Modified

the other decision nodes.29

In sessions PIR1, P IR2 and PIR3, the treatment was called “Partial Information Rev-
elation” (PIR). Subjects received the same kind of information as in treatment FIR, but
only for the opposite group. For example, in round 5, all GREEN (YELLOW) subjects were
shown the fractions of the YELLOW (GREEN) group that chose Pass or Take, in round 4,
in both nodes where YELLOW (GREEN) moves. Subjects could not see the fractions that
described the past behavior of their own group. We introduced treatment PIR in order to
examine a prediction of our model, namely that only information about opponents matters,
so information about the behavior of own population should be irrelevant for behavior.

In the remaining five sessions, the payoff functions were slightly modified. In particular,
subjects played the game illustrated in Figure 2. There were two modified-payoff treatments,
NIR−M and FIR−M . In the two sessions of treatment NIR−M , there was no aggregate
feedback. In the three sessions of treatment FIR − M , full aggregate information was
revealed, with “full information” having the same meaning as above. The modified-payoff
treatments were introduced in order to test the hypothesis that initial behavior serves as
an equilibrium selection device. As we shall explain in sections 6 and 7, the evolution of
play in the sessions with aggregate feedback seems to depend on initial conditions, and the
modification in payoffs changes these conditions.

5 Experimental results

In this section, we shall present the aggregate data in a manner that helps us illustrate
differences across treatments. Each experimental match will be characterized by the terminal
node that it reached. Our main descriptive statistic will be the distribution (of total matches)

29Of course, since late decision nodes were not necessarily reached in every match, subjects saw information
only about those matches that reached a given node in the previous round. If a given decision node was not
reached in any match, during the previous round, no proportions were shown.
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Figure 4: Distributions over Terminal Nodes, NIR, FIR and PIR, all Rounds

Note: In sessions NIR2 and PIR2 there were only 14 rounds. For these sessions, the data from
rounds 1− 14 are used here. There are 421 matches in treatment NIR, 450 matches in treatment
FIR, and 646 matches in treatment PIR.

across terminal nodes.30 Figures 4− 7 display the aggregate data, in terms of distributions
over terminal nodes. We are also interested in illustrating differences between short-run
and long-run behavior. Thus, we aggregate the data over all rounds, as well as over “late”
rounds only (starting from round 11). Since our main focus is on equilibrium behavior, in
our analysis of the results we will mainly refer to the data from late rounds. We name each
terminal node according to the last move required to reach that node (see Figure 1). So, the
terminal nodes, from first to last, are denoted T1, T2, T3, T4, and P4.

Another measure that will interest us is the average of total monetary payoffs. In a
given terminal node, total payoffs are simply the sum of the monetary earnings of the two
players. Taking their average over terminal nodes (weighted by the respective frequencies),
they provide a measure of average social payoffs achieved, and also of the degree to which
subjects tended to pass to late nodes in the game.

Before introducing the results for each treatment separately, we should note that our data
exhibit some general similarities to the results from previous experiments of the centipede
game. A stylized fact from previous experiments is that the Conditional Take Fractions
(CTF)31 increase as we move from the first to the last decision node of the game. In our
data, this was true for all treatments (see Tables 5 − 9 in section 6). However, the data in
our new treatments have some substantial novel features, which we shall now present.

30In section 6, where the focus will be on the comparison of the predictive performance of the various
theories, we will present the same data as distributions of moves in each decision node.

31The Conditional Take Fraction, in a particular decision node, is the number of matches where Take was
chosen in this node, divided by the number of all matches that reached the node.
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Figure 5: Distributions over Terminal Nodes, NIR, FIR and PIR, Rounds 11-15

Note: In sessions NIR2 and PIR2 there were only 14 rounds. For these sessions, the data from
rounds 11− 14 are used here. There are 131 matches in treatment NIR, 150 matches in treatment
FIR, and 206 matches in treatment PIR.

5.1 Treatments NIR and FIR

Figures 4 and 5 illustrate the distributions over terminal nodes of treatments NIR and
FIR. Figure 4 shows that there are small differences between treatments NIR and FIR,
if all rounds are considered. Figure 5, which considers only late rounds, reveals larger
differences. For example, the percentage of total matches that ended in terminal node T1
(which corresponds to the “bad” THSCE outcome of our model, as well as to the unique
Nash equilibrium outcome of the game with selfish payoffs) is about 50% in FIR and about
33% in NIR. Convergence to terminal node T1 is very strong in late rounds, much stronger
than in MP.

Tables 2 and 3 contain the main statistical tests, and we shall frequently refer to them.
To make statistical tests, we assumed that each match is independent of the others.32 Table
2 presents tests, which use data in late rounds only.33 We see that the higher frequency

32Since each subject is coupled with each member of the other group exactly once, each match is unique.
If we drop the assumption that matches in different rounds are independent, we can only run tests for a
single round. For completeness, and because the choice of any single round would seem arbitrary, we also
performed tests 1 − 6 (from Table 1) individually for each late round. We used Fisher’s exact test, and
we report the p-values in Table 4, in page 27. The other tests cannot be performed for individual rounds.
Sample sizes in each round are too small to use chi-square tests, and the frequency of terminal node P4 is
also too low in each round to run reasonable tests.

33For example, test 1 examines the null hypothesis that the fraction of total matches that end in the first
terminal node is the same for treatments NIR and FIR. Test 7 examines the null hypothesis that the
distributions across terminal nodes do not differ in treatments NIR and FIR.
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of terminal node T1 in treatment FIR, relative to NIR, is statistically significant (test
1). Moreover, the whole distributions, in these two treatments, differ substantially, and
the chi-square test shows that this difference is significant (test 7). Furthermore, average
total payoffs per match are $2.13 in treatment NIR, and $1.4 in treatment FIR, (always in
rounds 11− 15) (t-test, two-tailed, p = 0.0004). Therefore, full aggregate information seems
to have a negative effect on social payoffs. To sum up, the evidence indicates that subjects’
behavior is different when full information is provided.

Furthermore, in the two sessions of our control treatment, subjects seem to behave dif-
ferently than in the experiments of MP. The percentage of terminal node T1, in rounds
6− 10, was 29% and 38.5%, in sessions NIR1 and NIR2, respectively. In MP’s four-move
treatment, the analogous percentage was 6% (in two sessions) and 10% (in one session).
Pooling the data from different sessions together, the χ2 test rejects the null hypothesis of
homogeneity of the distributions in our NIR treatment and in MP’s treatment (test 8).

It is also noteworthy that in treatment FIR, very few matches reached the last terminal
node (P4). This node is particularly interesting, because it involves a dominated choice.
However, the frequency of this terminal node is so low, that data from all real rounds need
to be pooled together, in order to perform statistical tests. These tests are reported in Table
3. A simple test of differences in proportions finds that a significantly higher fraction of total
matches reaches terminal node P4 in NIR relative to FIR (test 17). We will also perform
Fisher’s exact test34 whenever the expected frequency for any category is very low, and the
contingency table is 2× 2.35 This test also finds a significant difference in the proportions of
P4 (test 16). In addition, the CTF in the last (fourth) decision node is 0.942 in treatment
FIR and 0.782 in treatment NIR. The χ2 test indicates that the difference is statistically
significant (test 21).

5.2 Treatment PIR

Figures 4 and 5 also display the distribution over terminal nodes of treatment PIR. We
will mainly consider behavior in late rounds. As in treatment FIR, convergence towards the
first terminal node was observed, but only in sessions PIR2 and PIR3. In session PIR1,
there were signs of convergence to the high-payoff THSCE outcome (we shall return to this
in section 6). As a result, the fraction of node T1 is not statistically different in PIR from
the respective fraction in either NIR or in FIR (tests 2 and 3). In general, the hypothesis
of homogeneity of the distributions in NIR, FIR and PIR can only be rejected at the 10%
level (test 9).36 Moreover, average total payoffs per match in PIR are equal to $1.79, which
is higher than in FIR (t-test, two tailed, p = 0.0055) and somewhat lower than in NIR
(t-test, two-tailed, p = 0.129).

34We made the calculations using the software of Preacher and Briggs (2001).
35A well-known weakness of z and chi-square testing is its inappropriateness when some category has very

low “expected frequency”, as is the case in our data. Conventional wisdom in the statistics literature says
that Fisher’s exact test is more appropriate for small samples, and chi-square tests for large samples. See
D’ Agostino, Chase, and Belanger (1988) and Sahai and Khurshid (1995) for an excellent review of the
appropriate methods.

36The pairwise tests give similar results. The distribution in NIR is not statistically different from the
distribution in PIR, and the distribution in FIR is also not statistically different from the distribution in
PIR (tests 10 and 11).
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Table 2: Statistical Tests Using Data Aggregated over Rounds 11− 15

Test Object Treatments Test Statistic P-Value

1 Π1 NIR(0.33) and FIR(0.5) z=2.77 0.005
2 Π1 NIR(0.33) and PIR(0.4) z=1.32 0.18
3 Π1 FIR(0.5) and PIR(0.4) z=1.55 0.12
4 Π1 NIR(0.33) and NIR-M(0.096) z=20 < 0.001
5 Π1 NIR-M(0.096) and FIR-M(0.18) z=2.06 0.038
6 Π1 FIR(0.5) and FIR-M(0.18) χ2 = 42.5 < 0.001
7 F NIR and FIR χ2 = 14.89 0.004
8 F NIR and NIRMP (rounds 6-10) χ2 = 35.8 < 0.001
9 F NIR, FIR and PIR χ2 = 15.02 0.059
10 F NIR and PIR χ2 = 2.98 0.56
11 F FIR and PIR χ2 = 6.81 0.14
12 F NIR and NIR-M χ2 = 26.47 < 0.001
13 F NIR-M and FIR-M χ2 = 14.51 0.006
14 F PIR1 and PIR(2+3) χ2 = 75.1 < 0.001
15 F FIR2-M and FIR(1+3)-M χ2 = 90.1 < 0.001

Note: “Object” refers to the parameter which is equal across treatments under the null hypothesis.
“F” denotes the whole distribution over the five terminal nodes. Π1 denotes the probability that
a match finishes in the first terminal node. The numbers in the parentheses are the empirical
realizations. PIR(2 + 3) denotes the pooled data from sessions PIR2 and PIR3. FIR(1 + 3)−M
has a similar meaning.

We now consider behavior in the last decision node, in rounds 1 − 15. The CTF in
decision node 4 in PIR is equal to 0.916. This is very similar to the CTF in FIR (test 24),
and higher than the CTF in NIR (although tests 22 and 23 provide mixed results at the
5% level). Homogeneity of the CTF across all treatments NIR, PIR and FIR is rejected at
the 5% level (test 25). Additionally, the proportion of total matches that ended in terminal
node P4 in treatment NIR is significantly higher than in treatment PIR (test 19).

5.3 Treatments NIR-M and FIR-M

Recall that in the modified-payoff treatments, YELLOW subjects who choose Pass in their
last decision node have somewhat higher monetary payoffs than before ($3 instead of $2.4).
To examine the effects of aggregate information in this setting, we will compare behavior
in the sessions with the new payoffs and no aggregate information (NIR−M), to behavior
in the sessions with the new payoffs and full information revelation (FIR −M). We will
also discuss the important differences in subjects’ behavior for a fixed level of information
feedback (NIR vs. NIR−M and FIR vs. FIR−M).

Figures 6 and 7 display the distributions over terminal nodes of treatments NIR−M and
FIR −M . A comparison of the distributions in treatments NIR and NIR −M shows an
important independent effect of the slight change in payoffs (test 12). Moreover, a very low
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Table 3: Statistical Tests Using Data Aggregated over all Rounds (1− 15)

Test Object Treatments Test Statistic P-Value

16 Π5 NIR(0.028) and FIR(0.0067) Fisher 0.017
17 Π5 NIR(0.028) and FIR(0.0067) z=2.47 0.013
18 Π5 NIR(0.028) and NIR-M(0.045) χ2 = 1.69 0.19
19 Π5 NIR(0.028) and PIR(0.007) Fisher 0.011
20 Π5 NIR-M(0.045) and FIR-M(0.091) χ2 = 7.65 0.006
21 Π5/[Π5 + Π4] NIR(0.782) and FIR(0.942) χ2 = 5.7 0.017
22 Π5/[Π5 + Π4] NIR(0.782) and PIR(0.916) χ2 = 4.1 0.042
23 Π5/[Π5 + Π4] NIR(0.782) and PIR(0.916) Fisher 0.064
24 Π5/[Π5 + Π4] FIR(0.942) and PIR(0.916) χ2 = 0.27 0.6
25 Π5/[Π5 + Π4] NIR, FIR and PIR χ2 = 7.7 0.021
26 Π5/[Π5 + Π4] NIR(0.782) and NIR-M(0.84) χ2 = 0.923 0.336
27 Π5/[Π5 + Π4] NIR-M(0.84) and FIR-M(0.69) χ2 = 8.7 0.003

Note: Π4 and Π5 denote the probability that a match finishes in the fourth and fifth terminal node,
respectively. The empirical values are contained in the parentheses. The number of matches that
reached the last decision node is 55 for treatment NIR, 52 for treatment FIR, 60 for treatment
PIR, 114 for treatment NIR−M , and 201 for treatment FIR−M .

fraction of total matches ends in terminal node T1 in treatment NIR −M . This fraction
significantly differs from treatment NIR (test 4). Importantly, the effects of aggregate
information on subjects’ behavior now seem markedly different. Average total payoffs in
FIR −M and NIR −M are $3.37 and $2.92 respectively (t-test, one-tailed, p = 0.061).
Hence, in the modified-payoff setting, full information tends to somewhat increase average
payoffs, rather than decrease them.37 Furthermore, average total payoffs per match in NIR
and in NIR−M differ significantly (t-test, one-tailed, p = 0.002).

In addition, aggregate information does not cause convergence to terminal node T1 in
sessions FIR1−M and FIR3−M , but only in session FIR2−M (see section 6). This large
difference between sessions, hidden in the pooled data, causes a paradoxical combination of
higher frequency for both terminal node T1 and terminal node P4, when aggregate feedback
is provided. More games end in terminal node T1 in FIR −M relative to NIR −M , a
difference which is statistically significant at the 5% level (test 5). On the other hand, in
treatment FIR − M , many subjects achieved very high payoffs, reaching the last or the
penultimate terminal node. A significantly higher fraction of matches reached terminal node
P4 in treatment FIR − M compared to NIR − M (test 20). Additionally, the CTF in
decision node 4 in treatment NIR −M is higher than in treatment NIR (0.84 vs. 0.782),
but the difference is not statistically significant (test 26). The CTF in FIR −M is only
0.69, significantly different than in NIR−M (test 27).

37Recall that average total payoffs in treatment FIR were equal to $1.4. In treatment FIR −M , which
differs from treatment FIR in a minor way, average total payoffs are more than double (t-test, one-tailed,
p < 0.001).
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Figure 6: Distributions over Terminal Nodes, NIR−M and FIR−M , all Rounds

Note: In session NIR2−M , there were 13 rounds. For this session, the data from rounds 1-13 are
used here. There are 394 matches in treatment NIR−M and 675 matches in treatment FIR−M .

6 The performance of theoretical predictions

We shall examine whether the predictions of our model, and the predictions of three different,
frequently used solution concepts, are consistent with the qualitative aspects of the data. In
particular, we shall compare the empirical CTF, in each decision node, with the theoretical
values of the CTF.38 We will consider the Nash equilibrium prediction for the two games of
Figures 1 and 2, and the AQRE prediction for the same games. Moreover, we shall consider
the sequential equilibrium (SE) prediction for the incomplete information game of Figure 3,
and also for the same incomplete information game with the modified payoffs.

We should emphasize that these three solution concepts predict that aggregate informa-
tion should have no effect on equilibrium behavior. In all of these approaches, the behavior
of the other population is assumed to be correctly anticipated in equilibrium. Feedback
and learning play no explicit role in forming agents’ beliefs. Thus, the predictions of these
concepts depend only on the extensive-form game. On the contrary, our model has different
predictions for the two different feedback environments.

Tables 5 − 9 juxtapose the observed distributions of moves from our data (in rounds
11− 15), in each of the four decision nodes of our game, with the theoretical values of these
distributions. Each table corresponds to a different treatment. By φi, where i = 1, 2, 3, 4,
we denote the CTF in node i. Since our model has multiple equilibria, the predictions are

38To be more precise, the theoretical CTF, according to some model, is the fraction of Take, that one
would observe by looking at the behavior of large populations of agents, who individually play according to
the equilibrium prediction. Consider, for example, a standard incomplete information model. For a given
decision node, the theoretical CTF is given by the average (over types) of the equilibrium probabilities of
Take, in this decision node, weighted by each type’s probability of reaching this node (see footnote 42).
Recall that for our model the theoretical CTF in node i is equal to πi(Ti|σ).
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Figure 7: Distributions over Terminal Nodes, NIR−M and FIR−M , Rounds 11-15

Note: In session NIR2−M , there were 13 rounds. For this session, the data from rounds 11-13 are
used here. There are 114 matches in treatment NIR−M and 225 matches in treatment FIR−M .

often presented as inequalities.

6.1 Nash equilibrium, AQRE and SE

In the Nash equilibrium of the centipede game, the CTF in decision node 1 is equal to one.
To calculate the AQRE, we used the program Gambit (McKelvey, McLennan, and Turocy,
2007) and then estimated the main parameter λ with maximum likelihood. One value of λ
for each of the extensive forms of Figures 1 and 2 was estimated. The estimated values of
λ were 0 and 1.197, respectively. Using these values, Gambit yields the theoretical CTFs
shown in Tables 5− 9.

In order to get exact predictions for our model, as well as for the SE model, we need to
estimate the fraction of altruists ξ. To do this, we apply the equation π2(P2|σ) ·π4(P4|σ) = ξ,
from Proposition 1, to the data from the four-move sessions of MP (in rounds 6− 10, which
are the last 5 rounds). Since πi(Ti|σ) is the theoretical CTF in node i, the empirical estimate
of the fraction of altruists would be ξ̂ = (1− φ2)(1− φ4) = (0.51)(0.18) ' 0.09. This value
is not very different from 0.05, which was estimated in the model of MP.

Standard calculations show that the incomplete information game of Figure 3 has a
unique SE, with the following behavior strategies for player 1 and selfish player 2: σ1 =
[(0, 1); (6

7
, 1

7
)], σself.2 = [(1−7ξ

1−ξ ,
6ξ

1−ξ ); (1, 0)].39 Also consider the incomplete information game

with the modified payoffs.40 For this game, there is also a unique SE, and the behavior

39The first (second) parenthesis in each brackets refers to the first (second) decision node of each player,
and the first number in each parenthesis corresponds to the probability of Take.

40Recall that this game is as shown in Figure 3, but with payoffs (9, 3) instead of (9.6, 2.4) in the last
terminal node of the selfish type.
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Table 4: P-Values of Tests 1− 6 for Individual Late Rounds

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Round 11 0.143* 0.629 0.04* 0.02 0.467 1
Round 12 0.115 0.148 0.816 0.041 0.467 < 0.001
Round 13 0.067 0.586 0.004 0.103 0.732 < 0.001
Round 14 0.008 0.265 0.103 0.302 0.712 < 0.001
Round 15 0.057 0.203 0.604 0.652 0.712 0.001

Note: In the tests marked with an asterisk, the difference between treatments is on the opposite
direction than the one exhibited in the aggregated data over rounds 11 − 15, which is shown in
Table 2.

Table 5: Data and Theoretical Predictions, Treatment NIR

Node Fraction Data THSCE Nash AQRE SE
1 1− φ1 0.665 0 0.5 1

φ1 0.335 0 < φ1 < 1 1 0.5 0
2 1− φ2 0.425 0.143 ≤ (1− φ2) ≤ 0.63 - 0.5 0.63

φ2 0.575 & (1− φ2) = 0.09/(1− φ4) - 0.5 0.37
3 1− φ3 0.378 - 0.5 0.143

φ3 0.622 φ3 ≤ 0.857 - 0.5 0.857
4 1− φ4 0.214 0.143 ≤ (1− φ4) ≤ 0.63 - 0.5 0.143

φ4 0.786 - 0.5 0.857

strategies are: σ1 = [(0, 1); (6
7
, 1

7
)], σself.2 = [(1−6.5ξ

1−ξ ,
5.5ξ
1−ξ ); (1, 0)]. Using the value ξ̂ = 0.09, we

calculate the CTFs induced by the SE strategies.41

The numerical predictions from these three equilibrium models, shown in Tables 5 − 9,
fail to capture the treatment effect of aggregate feedback. In addition, even in the treatments
with no aggregate feedback, the Nash equilibrium prediction performs very poorly (Tables
5 and 8). Moreover, in the treatments with the initial payoffs (Tables 5 − 7), the AQRE
predicts fifty-fifty play in all nodes, whereas the SE performs slightly better. Overall, these

41These CTFs can be found as follows. In decision nodes 1 and 3, since player 1 has only one possible type,
the distributions of moves simply coincide with the behavior strategies of this player. Regarding nodes 2 and
4, recall that all altruists choose Pass. The relative proportions of altruistic and selfish individual 2’s, who
move in node 2, are ξ and (1−ξ). So, the CTF, which is induced by the SE, is simply (1−ξ)·[(1−7ξ)/(1−ξ)] =
1− 7ξ (which is 0.37, substituting the estimated value of ξ). Thus, a fraction ξ of the total population of 2’s
reaches node 3 and is altruistic, and a fraction 6ξ of the total population of 2’s reaches node 3 and is selfish.
Some proportion of this large number of individual 2’s, who have reached node 3, is randomly chosen (their
opponents choose Pass in node 3), and they get to play in node 4. Accordingly, the relative proportion of
altruists, out of all individual 2’s who move in node 4, is still 1/7. Since all selfish individuals choose Take
and all altruists choose Pass in node 4, the predicted fraction of Take is 6/7. The same reasoning holds for
the incomplete information game with the modified payoffs.
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Table 6: Data and Theoretical Predictions, Treatment FIR

Node Fraction Data THSCE Nash AQRE SE
1 1− φ1 0.5 0 0 0.5 1

φ1 0.5 1 1 0.5 0
2 1− φ2 0.3 - - 0.5 0.63

φ2 0.7 - - 0.5 0.37
3 1− φ3 0.137 - - 0.5 0.143

φ3 0.863 - - 0.5 0.857
4 1− φ4 0 - - 0.5 0.143

φ4 1 - - 0.5 0.857

Table 7: Data and Theoretical Predictions, Treatment PIR

Node Fraction Data 2+3 1 THSCE Nash AQRE SE
1 1− φ1 0.593 0.405 0.92 0 0 0.5 1

φ1 0.407 0.595 0.08 1 1 0.5 0
2 1− φ2 0.385 0.17 0.551 - - 0.5 0.63

φ2 0.615 0.83 0.449 - - 0.5 0.37
3 1− φ3 0.398 0 0.268 - - 0.5 0.143

φ3 0.702 1 0.632 - - 0.5 0.857
4 1− φ4 0.143 - 0.143 - - 0.5 0.143

φ4 0.857 - 0.857 - - 0.5 0.857

Note: “2+3” denotes sessions PIR2 and PIR3 (pooled) and “1” denotes session PIR1. “Data”
still denotes all the three sessions pooled.

models seem inappropriate for capturing several important features of the data.

6.2 Our model

Now, consider the predictions of our model, using the estimated value ξ̂ = 0.09. In our
treatments without aggregate information, all terminal nodes are reached. Propositions 1
and 2 put restrictions on the CTFs that should be observed in a strategy profile where all
terminal nodes are reached, if behavior is compatible with THSCE. As we see in Table 5,
these restrictions are met by our data in treatment NIR. Regarding treatment NIR −M ,
the predictions of Proposition 2∗, shown in Table 8, are also generally accurate. Remarkably,
the condition (1− φ2)(1− φ4) = 0.09 holds almost exactly for both NIR and NIR−M .

In the environment with aggregate information, for both payoff functions, there are two
equilibrium outcomes. The “good” equilibrium outcome is described by the conditions in
Proposition 3 or 3∗, and the “bad” equilibrium outcome is the outcome where σ1(T1) = 1.
We shall use the bad outcome as a prediction for treatments FIR and PIR, and the good
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Table 8: Data and Theoretical Predictions, Treatment NIR−M

Node Fraction Data THSCE Nash AQRE SE
1 1− φ1 0.903 0 0.803 1

φ1 0.097 0 < φ1 < 1 1 0.196 0
2 1− φ2 0.601 0.143 ≤ (1− φ2) ≤ 0.573 - 0.756 0.585

φ2 0.398 & (1− φ2) = 0.09/(1− φ4) - 0.244 0.415
3 1− φ3 0.323 - 0.385 0.143

φ3 0.677 φ3 ≤ 0.857 - 0.615 0.857
4 1− φ4 0.15 0.157 ≤ (1− φ4) ≤ 0.63 - 0.104 0.143

φ4 0.85 - 0.896 0.857

Table 9: Data and Theoretical Predictions, Treatment FIR−M

Node Fraction Data 1+3 2 THSCE Nash AQRE SE
1 1− φ1 0.818 0.967 0.52 1 0 0.803 1

φ1 0.182 0.033 0.48 0 1 0.196 0
2 1− φ2 0.608 0.71 0.231 0.573 - 0.756 0.585

φ2 0.392 0.29 0.769 0.427 - 0.244 0.415
3 1− φ3 0.56 0.583 0.333 0.143 - 0.385 0.143

φ3 0.44 0.417 0.667 0.857 - 0.615 0.857
4 1− φ4 0.254 0.267 0 0.157 - 0.104 0.143

φ4 0.746 0.733 1 0.843 - 0.896 0.857

Note: “1+3” denotes sessions FIR1−M and FIR3−M (pooled) and “2” denotes session FIR2−M .
“Data” still denotes all the three sessions pooled.

outcome (described in Proposition 3∗) as a prediction for treatment FIR −M . The reason
is that, as we shall argue, initial behavior serves as an equilibrium selection device, and
behavior in initial rounds was very different in FIR −M than initial behavior in the other
two treatments. This selection device is supported by evidence discussed in section 7, which
shows that aggregate information induces strong path dependence. This may lead sessions,
which start with small differences, to end up with very different long-run behavior.42

We argue that initial differences in the CTF in decision node 4 might be critical for
long-run play. In particular, if this fraction in early rounds is less than 6/7, initial conditions
should be viewed as “optimistic”.43 Table 10 illustrates the initial fractions of Pass in decision

42This was the motivation for introducing the modified-payoff treatments. We hypothesized that the
small modification in payoffs could change initial behavior in an “optimistic” way, and it could lead to the
high-payoff equilibrium.

43To illustrate the argument, consider the decision of a GREEN subject in decision node 3. If he expects
a fraction of Pass lower than 1/7 in decision node 4, his optimal choice in node 3 is Take. When aggregate
feedback is provided, if the CTF in node 4 has exceeded 6/7 in the previous round, the agent will tend
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node 4, for the all the sessions with aggregate feedback. The initial CTF is generally much
higher in the sessions of PIR and FIR, than in the sessions of FIR −M . We therefore
argue that initial conditions were favorable for reaching the good equilibrium outcome in
treatment FIR−M , but not in treatment FIR or PIR.

The THSCE prediction for treatments FIR and PIR, illustrated in Tables 6 and 7,
is generally consistent with the observed convergence to early terminal nodes. However,
convergence to terminal node T1 is not complete. Furthermore, Table 8 shows that for
treatment FIR−M the predictions are reasonably accurate, but only for the first two decision
nodes. Hence, the model does not seem to perform very well. However, the pooled data of
treatments PIR and FIR −M might be misleading, because different individual sessions
seem to have converged to different equilibria. If we separate the data we get a different
picture (Tables 7 and 9). Play in sessions PIR2 and PIR3 exhibits strong convergence
to the bad equilibrium. However, session PIR1 seems to converge very close to the good
equilibrium of the initial-payoff game (as can be verified, by plugging the value ξ = 0.09 in
the conditions of Proposition 3). Similarly, in session FIR2 −M , there are strong signs of
convergence to the bad equilibrium outcome, while in sessions FIR1−M and FIR2−M ,
this is not the case. Nevertheless, even excluding session FIR2−M , the THSCE predictions
do not seem accurate for decision nodes 3 and 4. One reason might be that repeated-game
aspects may have played a role in treatment FIR−M (see next session).

Our objective is not to fit the data, since a single experiment does not provide conclusive
evidence. We only tried to show how a very simple deterministic model can incorporate
ex-post feedback in the analysis of equilibrium behavior, which is important for analyzing
experimental games.

Table 10: Initial Fractions of Pass in Decision Node 4, Treatments FIR, PIR, and FIR−M

Session Round 1 Rounds 1-5 Session Round 1 Rounds 1-5
PIR1 1/5 1/16 FIR1−M 3/9 10/23
PIR2 1/4 1/8 FIR2−M 1/2 2/12
PIR3 0/1 0/5 FIR3−M 3/4 16/39
FIR1 1/5 2/27 FIR 1/9 2/33
FIR2 0/4 0/6 PIR 2/10 2/29

FIR-M 7/15 28/74

Note: the numbers in bold letters are the totals for each treatment.

to choose Take in node 3, in the current round. So, GREEN subjects shall tend to respond to the initial
behavior of the YELLOW with Take in node 3. The same reasoning can now be used regarding the decision
of YELLOW subjects in decision node 2, who start to observe a high CTF in node 3. Continuing this
backward reasoning, we see that aggregate behavior is likely to converge to the bad equilibrium outcome.
On the other hand, if the initial CTF in node 4 was lower than 6/7, GREEN subjects would be inclined to
choose Pass in node 3, and behavior need not collapse.
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7 Dynamic aspects and path dependence

The large shift in the effects of aggregate feedback, observed in the modified-payoff treat-
ments, may be due to repeated-game effects, and to the strong path dependence, induced
by aggregate feedback. Repeated-game effects might explain why so many subject 2’s chose
Pass in their last decision node, in treatment FIR −M . Path dependence explains why
small changes in initial behavior become large differences in late rounds. It also accounts for
the large behavioral discrepancies found in different sessions, within a given treatment.

So far we have implicitly assumed that subjects ignore dynamic effects, and we shall
argue that this is generally justified on the basis of actual behavior. In the treatments with
aggregate feedback, a subject could sacrifice payoffs now, in order to affect the feedback in
the next round. However, in late rounds of treatments FIR and PIR, the frequency of the
choice Pass and average payoffs were so low, that is it difficult to imagine that subjects’
behavior was forward-looking, trying to induce future cooperation. The evidence from these
treatments, therefore, indicates that subjects did not seek to, or were not able to, utilize the
repeated-game aspects of the interaction. We have no reason to believe that the sessions with
the modified payoffs were somehow more conducive to forward-looking behavior. However,
we cannot rule out the possibility that this type of behavior may have played a role in
treatment FIR − M , given the high proportion of Pass in the fourth decision node. In
fact, this behavior is a possible reason for the poor performance of our model in treatment
FIR−M .

7.1 Regression analysis

Aggregate information also seems to have increased path dependence. This is indicated by
the sizeable differences in behavior exhibited in different sessions of a given treatment (in
particular, in treatments PIR and FIR − M). These differences are highly statistically
significant (tests 14 and 15).

To further examine whether aggregate information induced path dependence, we run a
few simple regressions. Notice that we do not observe individual subjects’ strategies, so we
use aggregate variables. In our first specification, we consider how the CTF in node 1, in
a given round, is affected by the opponents’ CTF in node 2, in the previous round. So,
our first specification is: φ1,t = b0 + b1φ2,t−1 + ε, where φi,t is the CTF in decision node i
in round t.44 So, our dependent variable captures current “own-group” behavior, and the
explanatory variable captures “other-group” behavior in the previous round. We predict
a positive relationship, because subject 1’s may expect that if the opponents’ CTF in the
previous round was high, this implies that the opponents’ CTF in the current round will
also be high. Clearly, the relationship should be stronger in the treatments with aggregate
feedback, since the opponents’ CTF in the previous round is publicly revealed in these
treatments.

44For all our specifications, sessions of the same treatment are pooled together, and all real rounds are
used. An observation consists of the CTF in node 1, for a given round t, plus the CTF in node 2, for round
t− 1. Therefore, the CTF in node 1, for the first round of each session, is not included in any observation.
Similarly, the CTF in node 2, for the last round of each session, is not included in any observation.
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Our second specification is: φ1,t = c0 + c1φ2,t−1 + c2φ3,t−1 + ε. We include φ3,t−1 because
sophisticated individual 1’s may prefer to choose T1 in the current round, if the CTF in
decision node 3 was high in the previous round. For, they may expect that opponents will
respond to this with a high fraction of Take in node 2 (especially when aggregate feedback is
provided). Our third specification examines the relationship between the behavior of subject
1’s in their last decision node (decision node 3), and the behavior of subject 2’s in their last
decision node (decision node 4), in the previous round: φ3,t = β0 + β1φ4,t−1 + ε.45

The results, shown in Table 11, support the idea that aggregate information reinforces
path dependence. In particular, in the treatments with aggregate feedback, subjects’ be-
havior in the current round depends strongly on opponents’ behavior in the previous round
(in the most relevant node). The regression coefficient of opponents’ behavior in round
t− 1 is much higher in the aggregate information treatments than in the control treatments,
and they are statistically significant. It should be noted that the weak results in treatment
FIR −M may be due to the lack of sufficient variability in the data, since in most rounds
of this treatment, the CTF in decision node 1 was equal to zero.

Table 11: Regression Results

NIR PIR FIR NIR−M FIR−M
b0 0.073 −0.221∗ −0.19∗ −0.032 −0.108∗
b1 0.391∗ 0.904∗ 0.904∗ 0.278∗ 0.515∗
c0 0.02 −0.315∗ −0.177 −0.068∗ −0.082∗
c1 0.41∗ 0.698∗ 0.866∗ 0.18∗ 0.445∗
c2 0.070 0.242∗ 0.0006 0.128∗ −0.014
β0 - - - 0.54∗ 0.10
β1 - - - 0.021 0.565∗

* Significant at the 5% level.

In order to directly examine our claim that aggregate feedback increased path depen-
dence, we tested whether aggregate information causes a “structural shock” in our model.
We pulled all the observations of the initial-payoff treatments together, and run a Chow test
of structural change in the coefficients, between the control treatment and the aggregate
feedback treatments. For the first specification, the p-value of the Chow test was equal to
0.0062, and hence we reject the null hypothesis that coefficients did not change. Conse-
quently, aggregate information seems to have increased path dependence in the initial-payoff
treatments. For the second specification, the p-value of the Chow test was 0.089, hence we
cannot reject the null hypothesis of equality of the coefficients. We also pulled together all
the observations of the modified-payoff treatments, and run the same Chow test. We got
weaker results (p-values equal to 0.232 and 0.13 for the first and the second specification,
respectively). However, as we explained before, there is a lack of sufficient heterogeneity
in that data. For our third specification, the p-value of the Chow test (using data from

45Unfortunately, the sparse availability of the data does not allow us to run this specification for all
treatments. Decision nodes 3 and 4 were very rarely reached in treatments NIR, PIR and FIR.
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only modified-payoff sessions, of course) was 0.0598. Hence, the hypothesis of no structural
change cannot be rejected at the 5% level.

With strong path dependence, the evolution of play in sessions FIR and FIR−M can
be better understood. As we have shown, the payoff modification changed initial behavior,
encouraging more initial passing. Once behavior started “optimistically”, path dependence
reinforced this tendency. Moreover, subjects were enjoying high payoffs, which may have fa-
cilitated understanding the fact that forward-looking behavior is profitable. So, it is possible
that they chose to pass more than what would be justified by myopic beliefs alone.

8 Conclusions

Motivated by the literature on learning in games, we conducted an experimental investigation
of the centipede game with anonymous matching. We introduced some new treatments,
where subjects received information about the proportion of each group that chose each
action in the previous round. We were interested in examining the equilibrium effects of
aggregate information. We developed a model based on the framework of DFL, assuming a
small fraction of pure altruists.

In the first set of our experiments, we used a payoff function similar to the one used in
MP. We found that both full and partial information release causes convergence to the first
terminal node, where social payoffs are very low. Our model captures the data relatively
well. In a second set of experiments, we tested whether a change in initial conditions can
alter the effects of aggregate information. In order to achieve this change in initial behavior,
we slightly increased the payoffs from choosing Pass in node 4. In two out of three sessions
with the modified payoffs, aggregate information resulted in higher average payoffs. This
shift is explained by strong path dependence, which tends to magnify initial differences in
behavior.

In terms of policy, the experimental results indicate that it is possible to use information
release as a means of inducing more trust and achieving higher social payoffs. However, the
results also raise the concern that the effectiveness of such a policy is not always guaranteed.
Information seems to enhance social welfare, but only for the sessions that start with high
cooperation. A policy lesson would be that only optimistic information should be revealed,
in the sense that the revealed behavior should already exhibit a certain level of trust.

Regarding future study, we believe that there is more scope in examining how people
respond to aggregate information. For example, revealing aggregate data about a large
number of rounds, rather than about only one round, could lead to different results, because
it would reduce path dependence. With respect to theory, we believe that more complex
models, which combine conditional social preferences with self-confirming equilibrium, might
improve our understanding of subjects’ behavior. Our model was a first step in understanding
how heterogeneous self-confirming beliefs interact with non-selfish preferences. Combining
the framework of DFL with a model like the one introduced in Levine (1998) might be a
difficult but worthwhile endeavor.
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A Appendix: Proofs

Proof of Proposition 1

A simple dominance argument concerning the behavior of altruistic player 2 shows that
in all THSCE where σ1(T1) 6= 1, it holds that σ2(T2|θ2

2) = 0, and in all THSCE where
σ1(P1P3) > 0, it holds that σ2(P2P4|θ2

2) = 1. (Note that these conditions are also true
in the setting with aggregate feedback). Moreover, in all THSCE where σ1(T1) 6= 1, it
holds that σ2(P2P4|θ1

2) = 0. To see this, assume on the contrary that there is a THSCE σ
where σ1(T1) 6= 1 and σ2(P2P4|θ1

2) > 0, so that condition 6 of Lemma 1 holds. If, for this
THSCE, σ1(P1P3) = s1(P1P3|σ1) = 0, then, for any conjectures σ̂1 that satisfy condition 6,
s1(P1P3|σ̂1) = s1(P1P3|σ1) = 0. Thus, Eu2(P2P4, σ̂1) = 0.15 ·s1(T1|σ1)+0.6 · [1−s1(T1|σ1)] <
Eu2(T2, σ̂1) = 0.15 ·s1(T1|σ1)+1.2 · [1−s1(T1|σ1)], so P2P4 cannot be optimal. If σ1(P1P3) =
s1(P1P3|σ1) > 0, then for any conjectures that satisfy condition 6, Eu2(P2P4, σ̂1) = 0.15 ·
s1(T1|σ1) + 0.6 · s1(P1T3|σ1) + 2.4 · s1(P1P3|σ1) < Eu2(P2T4, σ̂1) = 0.15 · s1(T1|σ1) + 0.6 ·
s1(P1T3|σ1) + 4.8 · s1(P1P3|σ1). We conclude that the condition σ2(P2P4|θ1

2) = 0 must hold.
(A very similar argument shows that this condition also holds in the presence of aggregate
feedback. We will use the three conditions established in this paragraph in all three proofs.)

Let σ be a THSCE such that σ1(T1) 6= 1, which implies that π1(T1|σ) 6= 1. For any action
that player 1 or selfish player 2 chooses with positive probability, the relevant condition of
Lemma 1 must be satisfied. First, it is clear that π2(T2|σ) 6= 1, since σ2(T2|θ2

2) = 0. Now we
claim that σ1(P1P3) 6= 0. To show this, assume that, on the contrary, σ1(P1P3) = 0.

Under this hypothesis, we argue that it must be the case that σ2(T2|θ1
2) = 1. If P2T4

was played with positive probability by selfish player 2, condition 5 of Lemma 1 would hold.
There should then exist conjectures σ̂1, such that they induce the correct distribution of
actions about player 1, and such that the expected payoffs of action P2T4 are higher than
the expected payoffs of action T2, given the same conjectures. But it holds that, for any
such conjectures, Eu2(P2T4, σ̂1) = 0.15 · s1(T1|σ1) + 0.6 · s1(P1T3|σ1) + 4.8 · s1(P1P3|σ1) =
0.15 · s1(T1|σ1) + 0.6 · [1− s1(T1|σ1)] < Eu2(T2, σ̂1) = 0.15 · s1(T1|σ1) + 1.2 · [1− s1(T1|σ1)].

Therefore, if the initial hypothesis (that σ1(P1P3) = 0) were true, it would have to hold
that σ2(T2/θ

1
2) = 1, and, hence, s2(T2|σ2, p) = (1 − ξ). Since σ1(T1) 6= 1, and since we

have assumed that σ1(P1P3) = 0, P1T3 must be played with positive probability. Thus,
condition 2 of Lemma 1 would have to hold. For any beliefs and conjectures that satisfy it,
the expected payoffs of P1T3 are equal to 0.3 · (1− ξ) + 2.4 · ξ, and the expected payoffs of T1

are 0.6. So, for P1T3 to be weakly preferred to T1, it must be the case that ξ ≥ 1/7, which is
untrue.46 Hence, the initial hypothesis must be wrong, so σ1(P1P3) > 0. This implies that
π3(T3|σ) 6= 1.

Since σ2(P2P4|θ2
2) = 1, it holds that π4(T4|σ) 6= 1. Clearly, σ ∈ Σ∗, since σ1(P1P3) > 0

and s2(T2|σ2, p) 6= 1. Finally, it holds that π4(P4|σ) = [ξ · 1 + (1 − ξ) · 0]/π2(P2|σ) ⇒
ξ = π2(P2|σ) · π4(P4|σ). QED

Proof of Proposition 2

46Notice that any beliefs about the fractions of P2T4 and P2P4 can be used to rationalize the choice of
action P1T3 as opposed to action P1P3.

34



Let σ be a THSCE such that 0 < πi(Ti|σ) < 1 for i = 1, 2, 3, 4. This profile must satisfy
the relevant conditions of Lemma 1. Action P2T4 is played with positive probability by
selfish 2, since 0 < π4(T4|σ), and σ2(P2P4|θ2

2) = 1. So, condition 5 of the lemma must hold,
and for any conjectures consistent with this condition, Eu2(P2T4, σ̂1) = 0.15 · s1(T1|σ1) +
0.6 · s1(P1T3|σ1) + 4.8 · s1(P1P3|σ1), and Eu2(T2, σ̂1) = 0.15 · s1(T1|σ1) + 1.2 · [s1(P1T3|σ1) +
s1(P1P3|σ1)]. Thus, since P2T4 is weakly optimal, s1(P1T3|σ1) ≤ 6s1(P1P3|σ1), and it follows
that π3(P3|σ) = s1(P1P3|σ1)/[s1(P1T3|σ1) + s1(P1P3|σ1)] ≥ 1/7.

Similarly, since P1P3 is played with positive probability, condition 3 of the lemma holds.
For any beliefs and conjectures that satisfy condition 3, Eu1(P1P3, σ̂2, µ̃1) = 0.3·s2(T2|σ2, p)+
1.2 · s2(P2T4|σ2, p) + 9.6 · s2(P2P4|σ2, p), and Eu1(P1T3, σ̂2, µ̃1) = 0.3 · s2(T2|σ2, p) + 2.4 ·
[s2(P2T4|σ2, p)+s2(P2P4|σ2, p)]. Since P1P3 is weakly optimal, s2(P2T4|σ2, p) ≤ 6s2(P2P4|σ2, p),
so π4(P4|σ) = s2(P2P4|σ2, p)/[s2(P2T4|σ2, p) + s2(P2P4|σ2, p)] ≥ 1/7.47

Moreover, σ1(P1T3) > 0, so condition 2 of the lemma holds. For any beliefs and conjec-
tures that satisfy condition 2, Eu1(P1T3, σ̂2, µ̃1) = 0.3 · s2(T2|σ2, p) + 2.4 · [1 − s2(T2|σ2, p)]
and Eu1(T1, σ̂2, µ̃1) = 0.6, so it must be that for P1T3 to be optimal, s2(T2|σ2, p) ≤ 6/7.
But notice that π2(P2|σ) = 1− s2(T2|σ2, p), so π2(P2|σ) ≥ 1/7. Note that we need not also
compare the expected payoffs of action P1T3 with the expected payoffs of action P1P3, since
the choice of the former action can be rationalized by any beliefs about the probabilities of
actions P2T4 and P2P4.

Similarly, note that the choice of actions T1 and T2 is easy to rationalize by arbitrary
beliefs about opponents’ play, and hence does not impose additional constraints. Since
ξ = π2(P2|σ) · π4(P4|σ), the conditions above imply that π2(P2|σ) ≤ 7ξ and π4(P4|σ) ≤ 7ξ.
QED

Proof of Proposition 3

Consider a strategy profile σ such that σ1(T1) 6= 1. We shall examine which conditions
have to hold, in order for σ to be a THSCE with aggregate information. Since σ2(T2|θ2

2) = 0,
it holds that s2(T2|σ2, p) 6= 1, so the aggregate signal function of population 2 ensures that
the conjectures of all individual 2’s induce a distribution of 1’s actions which is the same as
the actual distribution. So the subjective expected payoffs from each action, T2, P2T4, and
P2P4, coincide with the true expected payoffs.

If it was true that σ1(P1P3) = 0, then the best response of selfish individual 2’s would be
T2 (since 1.2 > 0.6). So, it would have to hold that s2(T2|σ2, p) = (1− ξ). Notice that P1T3

should be necessarily played with positive probability, since σ1(T1) 6= 1. The signal function
of population 1 would then imply that the true fraction s2(T2|σ2, p) is expected. Then, for
P1T3 to be optimal, it would have to hold that ξ ≥ 1/7 (see proof of Proposition 1), which
is untrue. Therefore, we conclude that σ1(P1P3) 6= 0.

Now assume that σ1(P1P3) = 1, (so that all individual 1’s have correct beliefs about the
distribution of actions of population 2). The best reply of selfish 2’s is then P2T4 (since
4.8 > 2.4 > 1.2), which implies that s2(P2P4|σ2, p) = ξ, s2(P2T4|σ2, p) = (1 − ξ). So the

47Action P1P3 is weakly optimal, since in the next paragraph we also show that Eu1(T1, σ̂2, µ̃1) <
Eu1(P1T3, σ̂2, µ̃1).
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expected payoffs of P1P3 are equal to 9.6 · ξ + 1.2 · (1− ξ) and the expected payoffs of P1T3

are equal to 2.4. Hence, P1P3 cannot be optimal, since ξ < 1/7. We conclude that our initial
assumption cannot be true, so σ1(P1P3) 6= 1.

Similarly, if it was the case that σ1(P1T3) = 0, then, since P1P3 cannot be played with
probability one, both T1 and P1P3 must be played with positive probability. Therefore,
individual 1’s would have to be indifferent between T1 and P1P3. But since the best response
of all selfish 2’s would then be P2T4 (since 4.8 > 2.4 > 1.2), individual 1’s should strictly
prefer action P1P3 to action T1, because 1.2 · (1− ξ) + 9.6 · ξ > 0.6.

Consequently, both P1T3 and P1P3 must be played with positive probability, so the ex-
pected payoffs of P1T3 and P1P3 must be the same. Hence, 2.4[s2(P2T4|σ2, p)+s2(P2P4|σ2, p)] =
1.2 · s2(P2T4|σ2, p) + 9.6 · s2(P2P4|σ2, p) so that s2(P2P4|σ2, p) = s2(P2T4|σ2, p)/6. Therefore,
π4(P4|σ) = s2(P2P4|σ2, p)/[s2(P2P4|σ2, p) + s2(P2T4|σ2, p)] = 1/7.

Remember that σ2(P2P4|θ1
2) = 0. Since π4(P4|σ) = [ξ · 1 + (1 − ξ) · 0]/[1 − (1 − ξ) ·

σ2(T2|θ1
2)] = 1/7 > ξ, it must be the case that σ2(T2|θ1

2) > 0. Since π4(P4|σ) 6= 1, it
holds that σ2(P2T4|θ1

2) > 0. This implies that the expected payoffs, for selfish individual
2’s, of action P2T4 are equal to the expected payoffs of action T2. Therefore, it holds that
1.2 · [s1(P1P3|σ1) + s1(P1T3|σ1)] = 0.6 · s1(P1T3|σ1) + 4.8 · s1(P1P3|σ1) =⇒ 6s1(P1P3|σ1) =
s1(P1T3|σ1). Accordingly, π3(P3|σ) = s1(P1P3|σ1)/[s1(P1T3|σ1) + s1(P1P3|σ1)] = 1/7.

Moreover, since 1/7 = π4(P4|σ) = ξ/π2(P2|σ), it follows that π2(P2|σ) = 7ξ. Finally,
since the expected payoffs of action T1 are lower than the expected payoffs of actions P1P3

and P1T3 (which are equal to 14.7ξ + 0.3), we conclude that π1(T1|σ) = 0. QED

References

Olivier Armantier. Does observation influence learning? Games and Economic Behavior, 46
(2):221–239, 2004.

Pierpaolo Battigalli. Comportamento razionale ed equilibrio nei giochi e nelle situazioni
sociali. Master’s thesis, Bocconi University, 1987.

Pierpaolo Battigalli and Martin Dufwenberg. Dynamic psychological games. Journal of
Economic Theory, 144(1):1–35, 2009.

Joyce Berg, John Dickhaut, and Kevin McCabe. Trust, reciprocity, and social history. Games
and Economic Behavior, 10(1):122–142, 1995.

Robert Cialdini and Noah Goldstein. Social influence: Compliance and conformity. Annual
Review of Psychology, 55:591–621, 2004.

Ralph D’ Agostino, Warren Chase, and Albert Belanger. The appropriateness of some
common procedures for testing the equality of two independent binomial populations.
The American Statistician, 42(3):198–202, 1988.

Eddie Dekel, Drew Fudenberg, and David K. Levine. Learning to play bayesian games.
Games and Economic Behavior, 46(2):282–303, 2004.

36



Martin Dufwenberg and Uri Gneezy. Information disclosure in auctions: an experiment.
Journal of Economic Behavior and Organization, 48(4):431–444, 2002.

Mark Fey, Richard D McKelvey, and Thomas R Palfrey. An experimental study of constant-
sum centipede games. International Journal of Game Theory, 25(3):269–87, 1996.

Bruno Frey and Stephan Meier. Social comparisons and pro-social behavior: Testing ‘con-
ditional cooperation’ in a field experiment. American Economic Review, 94(5):1717–1722,
2004.

Drew Fudenberg and David K Levine. Self-confirming equilibrium. Econometrica, 61(3):
523–45, 1993.

Drew Fudenberg and David K Levine. Measuring players’ losses in experimental games. The
Quarterly Journal of Economics, 112(2):507–36, 1997.

Francis Fukuyama. Social capital, civil society and development. Third world quarterly, 22
(1):7–20, 2001.

Francis Fukuyama. Social capital and development: the coming agenda. SAIS Review, 22
(1):22–37, 2002.

Glenn Harrison and Kevin McCabe. Expectations and fairness in a simple bargaining ex-
periment. International Journal of Game Theory, 25(3):303–327, 1996.

Matthew Jackson and Ehud Kalai. Social learning in reccuring games. Games and Economic
Behavior, 21(1):102–134, 1997.

Ehud Kalai and Ehud Lehrer. Rational learning leads to nash equilibrium. Econometrica,
61(5):1019–45, 1993.

Toshiji Kawagoe and Hirokazu Takizawa. Level-k analysis of experimental centipede games.
Ssnr paper, 2008. URL http://papers.ssrn.com/sol3/papers.cfm?abstract_id=

1289514.

David K. Levine. Modeling altruism and spitefulness in experiment. Review of Economic
Dynamics, 1(3):593–622, 1998.

Richard McKelvey and Thomas Palfrey. Quantal response equilibria for extensive form
games. Experimental Economics, 1(1):9–41, 1998.

Richard McKelvey, Andrew McLennan, and Theodore Turocy. Gambit:software tools for
game theory, 2007. Version 0.2007.01.30, 2007. http://www.gambit-project.org.

Richard D McKelvey and Thomas R Palfrey. An experimental study of the centipede game.
Econometrica, 60(4):803–36, 1992.

Ryan Murphy, Amnon Rapoport, and James Parco. The breakdown of cooperation in iter-
ative real-time trust dilemmas. Experimental Economics, 9(2):147–166, 2006.

37



Rosemarie Nagel and Fang Fang Tang. Experimental results on the centipede game in normal
form: an investigation on learning. Journal of Mathematical Psychology, 42:356–384, 1998.

Andreas Ortmann, John Fitzgerald, and Carl Boeing. Trust, reciprocity, and social history:
A re-examination. Experimental Economics, 3:81–100, 2000.

Ignacio Palacios-Huerta and Oscar Volij. Field centipedes. American Economic Review, 99
(4):1619–1635, 2009.

Kristopher Preacher and Nancy Briggs. Calculation for fisher’s exact test: An interactive
calculation tool for fisher’s exact probability test for 2 x 2 tables, 2001. Available from
http://quantpsy.org.

Amnon Rapoport, William E. Stein, James E. Parco, and Thomas E. Nicholas. Equilib-
rium play and adaptive learning in a three-person centipede game. Games and Economic
Behavior, 43(2):239–265, 2003.

Hardeo Sahai and Adwer Khurshid. On analysis of epidemiological data involving a 2x2
contingency table: An overview of fisher’s exact test and yates’ correction for continuity.
Journal of Biopharmaceutical Statistics, 5(1):43–70, 1995.

Klaus G. Zauner. A payoff uncertainty explanation of results in experimental centipede
games. Games and Economic Behavior, 26(1):157–185, 1999.

38


	1215 cover
	Title Aggregate Information and the Centipede Game: a Theoretical and Experimental Study. 

	1215ManiadisWorkingPaper

